CHANGES IN CHILDREN'S CREATIVITY IN
LOGO ENVIRONMENTS

Lyuba J. Lazarova, Katya G. Stoycheva

BIography

1. Full Name: Lyuba Jivkova Lazarova

2. Affiliation: National Research Center for Education and Science, 1113 Sofia, 125 Tzarigradska shouoo Bivd., tel. (+359 2) 71 72 24

3. Present Address: 1421 Sofia, 97 A Arasenaski Bivd., tel/fax (+359 2) 65 24 98

Lyuba Lazarova graduated in Psychology and Bulgarian Language from Sofia State University in 1982. Specialized in the field of developmental and social psychology. Presently works on a doctoral dissertation in Moscow University, which focuses on the impact of computer-based education on students' communicative and cognitive skills. Research assistant at the National Research Center for Education and Science. Has interests in creative and social psychology, education and developmental psychology, computer assisted learning. Involved in international research project on the impact of information technologies in education on children (ITEC Project) since its beginning in 1989 as a national coordinator and expert.

1. Full Name: Katya Gueorguieva Stoycheva

2. Affiliation: New Bulgarian University, Department of Cognitive Science, 1000 Sofia, 80 Levski Blvd. tel. (+359 2) 87 25 30 03 fax. (+359 2) 88 09 02 National School for Ancient Languages and Culture, 1124 Sofia, 72 Tzar Ivan Asen II, tel. (+359 2) 46 68 98

3. Present Address: 1407 Sofia, 21 Elin Ivan Str., tel. 66 vh.2 up. 20. tel. (+359 2) 82 25 68.

Katya Stoycheva graduated in Psychology and French Language from the Sofia State University in 1984. Has specialization in Cultural Theory and History and presently works on a doctoral dissertation in the field of creativity. Lecturer on Creative Personality at the New Bulgarian University and lecturer on Psychology at the National School for Ancient Languages and Culture. Has interests in gifts to children and gifted education, creativity testing and creativity training, cultural context of educational innovations. Involved in international research project on the impact of information technologies in education on children (ITEC Project) since 1990 as a creativity expert.

ABSTRACT

This presentation summarizes the authors' experience in studying changes in children's creativity as a result of LOGO-based learning in different educational context. Two empirical investigations (in-school and out-of-school settings) are carried out to examine the relationships between changes in children's creative thinking abilities (measured by Torrance Tests of Creative Thinking) and characteristics of children's work with computers. The results lead to the conclusion that experimentally proved creative potential of the computer-based education needs appropriate environment and instructional strategies in order to be fully materialized in the real-life educational processes.

Keywords:
Creativity; LOGO programming, LEGO-LOGO activities, real-life educational context.

Aside our proper research interest in creativity, we firmly believe that creativity is an integral aspect of human learning and living. Many of society's needs change drastically and the objectives of education, the concepts of teaching, methods of instruction and criteria for evaluating instruction must also change. There was a time when we thought that a person could learn some things at school and this learning would last him/her for the rest of his/her life. Today's schools are being asked to produce men and women who can think, who can adapt to change and who can find more adequate solutions to impelling world problems. Man of the future will have to behave creatively and today's educational technologies have to help today's students to meet the challenge.

Information Technology in Education and Creativity

Creativity is very often claimed to be a positive outcome of the computer-based education. Specialists in computers uniformly agree that such an instructional innovation is expected to enhance children's creativity, but there are only few researches in the field: Clements (1986; 1991); Blumen (1991); Sakamuki, Zhao and Sakamoto (1991). Controversial findings are reported also (Bruce, 1989; Sakamuki, Zhao and Sakamoto, 1991) and the need for further research in this field is emphasized (Bruce, 1989; Clements, 1991).

According to Bruce(1989), the analysis of the effects of the use of information technology in education on creativity should be done in terms of all relevant sets of variables: the kind of technology involved, the educational strategy in which it is embedded, the functions it serves in the particular educational strategy, and the aspects of creativity involved or affected .

Difficulties are related mainly with the fact that there is no widely accepted theory of creativity; the field of creativity research is characterized by a rather peaceless coexistence of different approaches and models. Several conceptions have been proposed, which although very similar, differ by the answers they are giving to two principal questions. 1) how the individual's creative potential is being conceptualized (and, respectively, what kind of measurement instruments have been developed?); and, 2) is the individual's creative potential susceptible to educational influences?

Our research work is based on Torrance's (1979) conception of creativity as a natural problem-solving process which is similar in all fields and is highly teachable. We use also Torrance Tests of Creative Thinking (as did Clements, 1980; 1991; and Blumen, 1991) as a creativity measure. The Verbal and Figural batteries consist of open-ended tasks which require kinds of thinking, analogous to the thinking involved in recognized creative achievements and which measure individual differences in creative thinking abilities.

This presentation summarizes the authors' experience in studying changes in children's creativity as a result of LOGO-based learning in different settings. The main results of our studies seem to be in raising questions rather than answering them. Data analyses draw attention to the characteristics of the educational context which probably affect the impact of computers in education on children's cognitive development.

Study 1

In 1000/1991 we were engaged with an empirical investigation of the development of the creative thinking abilities in the context of learning programming in a regular classroom setting. Subjects of the study were 31 sixth graders (19 boys and 12 girls) who studied Informatics-LOGO for a second school year. The
previous year they had LOGO-lessons twice a week for 72 hours per year. The 1990/1991 school year they had LOGO-lessons once a week or 36 hours total. The data were gathered at the beginning and at the end of the 1990/1991 school year in order to determine eventual changes in students' creative thinking abilities and if and how these changes are related to several characteristics of students' work with computers.

Verbal and Figural Forms A of the Torrance Tests of Creative Thinking served as a creativity indicators in both pre- and posttesting. Information about students' involvement with computer work was gathered from their informatics teacher by a 3-point Likert-type scale for measuring children's interest in and experience with computers. Academic achievements in Informatics were considered as well.

Data analyses show that:

1. The group as a whole shows statistically significant positive gains in all verbal and all nonverbal measures of creative thinking abilities at the end of the school year.

2. Students who are more interested in computers, and those who are better in Informatics tend to be less fluent (p<0.05) and less flexible (p<0.05) in the verbal production of unusual ideas. Pupils with higher academic achievements in Informatics and who demonstrate higher interest in computers tend to give less imaginative and abstract titles to their pictures (p<0.05) in the Figural Form (they prefer just to label their drawings). Deep involvement with computers seems to influence negatively the richness of the verbal expression of ideas. This fact is probably related to the specific features of the effective communication with the computer which stress on neatness, precisionness, unambiguity of the line and sense on short language forms.

3. Experience with and interest in computers and achievement in Informatics present the highest positive correlations, although not significant, with figurative originality (number of unusual, unique ideas) and elaboration (number of details, used to elaborate the picture). Such a result is consonant to data, reported by Clements (1988), who studied the effects of LOGO computer programming and CAL on first- and third-grade children's creativity and found out that LOGO group outscored the others on originality and elaboration in their responses to figural creative tasks.

Study 2

The second study we carried out focused upon studying the same problem in a new educational context, differing from the school setting by the way in which the information processing functions of the computer have been incorporated into the learning process.

In 1992 we initiated a study aimed at investigating the presumed advantages of the out-of-school computer use in developing creativity. We chose a rather rare pedagogical situation: the sessions of the LOGO-LOGO Club in Sofia. The whole group visiting the Club was observed. The sample consisted of 20 children from about the same age group as in the previous study. In 1991 they had had 30 hours of LOGO-based activities without the use of computer. During the year 1992, they had 30 LOGO-LOGO lessons using the Bulgarian version of LOGO language, developed by COMSED Ltd. Children were tested with the same instruments in February 1992, at the beginning of the course and were retested at its end in May, 1992.

The LOGO-LOGO Club represents a rather different learning con-
attitudes (self-directed search for different solutions; mutually supportive activity within the group; persistence in the work; very high level of internal motivation) which had not been typical for the regular classroom setting. It is true that further investigations of the computer's impact on children's creativity rely heavily on behaviorally-grounded creativity indicators.

Significant sex differences were found in both studies. In the first study 72% of the pupils who are seen as very much interested in computers and 74% of those who have variety of experience with computers are boys; 73% of the pupils who receive highest marks in Informatics are boys too. At the same time girls outscored boys on all verbal and on most of the nonverbal creativity indicators. This discrepancy makes quite logical the negative relationship between changes in creativity and the characteristics of computer use.

Girls are minority (N=3) in the LEGO-LOGO Club too. Boys are more likely than girls to perceive computers, informatics and different type of construction tools as a valuable field for expressing one's potential and receiving acknowledgement. It might be that our cultural stereotypes don't consider computers to be very much a "female" business. Similar sex differences are reported by Sakamoto, Zhao and Sakamoto (1991) for a sample of over 700 Japanese 4th - 6th graders.

Conclusions

How can we integrate the results we obtained with the accumulated data concerning the impact of computer-based education on children's creativity?

Both Clements (1986, 1991) and Blumen (1991) investigate the influence of LOGO programming on children's creativity in well controlled experimental conditions. They both report positive outcomes which confirm that LOGO environment might be a positive factor in children's creative development.

When real-life educational context is considered, the results are not so conclusive. Mitterer and Rose-Krasnor (1986) revealed changes in problem solving skills which could be attributed to the LOGO instruction (cited in Bruce, 1989). Sakamoto, Zhao and Sakamoto (1991) found out that computer use experience in school (programming) enhance children's creative initiatives, that is, that computer use at home (games) does not always enhances initiatives and, on the other hand, decrease children's inquiry abilities. Therefore, the advantages of the computer-based instruction, which have been experimentally proved, are not automatically materialized in real-life educational processes: additional efforts are needed to put them into practice.

Considering our proper results from this point of view, we direct our attention towards those factors/variables in the Bulgarian educational context which might be responsible for the ineffective computer use in and out of school. One of the most important is the overall shortage of computer resources available to children at home and at school. Our results are probably predetermined by the restricted computer experience of the Bulgarian children. For further enrichment of the educational context by the means of new information technologies and the implementation of appropriate instructional strategies are needed to provide children's creative growth.

References


2. R. Bruce, "Creativity and Instructional Technology: Great Potential, Imperfectly Studied", Contemporary Educational Psychology, 14(1989), 241-255.


7. P. Torrance, "The search for Satori and creativity" (Buffalo, NY: Creative Education Foundation, 1979)