New Bulgarian University

Department Informatics, Programme Networking Technology

NETB101 Introduction to Programming

(Nikolay Kirov, lecturer)

Lecture 1: Introduction I

[image: image1]
Lecture Goals

· To understand the activity of programming
· To learn about the architecture of computers
What is a Computer?

· Computers can handle repetitive chores without becoming bored or exhausted.
· A computer is programmable to handle different tasks: 
· Balancing checkbooks
· Processing words
· Playing games
· Computer actions are composed of huge numbers of extremely primitive operations.
· Examples of primitive operations: 
· Put a red dot at this screen position

· Get a number from the location in memory

· Send a letter A to the printer

· Add up these two numbers

· If this value is negative, continue the program at that instruction.

· The computer gives the illusion of smooth interaction because it executes these operations a great speed.
· Computers are flexible: they can handle a wide range of tasks.
What is Programming?

· A program tells the computer the sequence of steps needed to fulfill a task.
· A programmer designs and implements these programs.
· Most computer users are not computer programmers.
· Programming is an essential skill for a computer scientist.
· Programming is not the only skill required to be a successful computer scientist.
· Early programming experiences are mundane and will not rival sophisticated software that you are familiar with.
· Once certain skills are developed, even simple programs can be thrilling.
The Anatomy of a Computer

· CPU (Central Processing Unit): 
· Plastic, metal and mostly silicon.
· Composed of several million transistors.
· Enormously complicated wiring.
· Performs program control, arithmetic, and data movement.
· Locates and executes program instructions.
· Memory: 
· RAM (Random Access Memory): read-write memory.
· ROM (Read Only Memory): contains certain programs that must always be present.
· Secondary storage (e.g. a hard drive) provides persistent storage.
· The bus is a set of electrical lines that connect the CPU, RAM, and other devices.
· The motherboard holds the CPU, memory, and bus, as well as card slots which connect peripherals to the computer.
· Peripherals allow the user and computer to interact: 
· Printer
· Mouse
· Keyboard
· Modem
· Some computers are connected to one another through networks.
[image: image2]


Lecture 2: Introduction II

Lecture Goals

· To learn about programming languages
· To understand your first C++ program
· To recognize syntax and logic errors
Translating Human-Readable Programs to Machine Code

· The processor executes machine instructions: 
· Extremely primitive: 
1. Move the content of memory location 40000 into register eax.

2. Subtract the value 100 from register eax.

3. If the result is positive, continue with the instruction that is stored in memory location 11280.

· Encoded as numbers:

161 40000 45 100 127 11280

· Tedious and error prone to look up numeric codes and enter them manually.
· Each processor has its own set of machine instructions.
· Assembler (low-level language) 

· First step - assign short names to commands: 
mov 40000, %eax
sub 100, %eax
jg 11280
· Second step - using symbolic names instead of absolute addresses (memory locations): 

mov int_rate, %eax
sub 100, %eax
jg int_error
· Makes reading easier for humans.
· Translated into machine instructions by another program called assembler.
· Still processor dependent.
· Higher-level languages: 
· Independent of the underlying hardware. 
· Easiest for humans to read and write.
· They follow certain conversions which are much stricter than they are for human languages.
if (int_rate > 100) 



message_box("Interest rate error");
· Translated by compilers into machine instructions.


Programming Languages

· A special computer program, a so-called compiler, translates the higher-level description into machine instructions for a particular processor.
· Compilers follow strict conventions regarding programming language use. When a compiler reads programming instructions (expressions, operators, statements) in a programming language, it will translate them into machine code only if the input follows the language conventions exactly.
· Strict rules prevent more disastrous errors that could arise should the compiler "guess."
· There are many (hundreds of) programming languages. 
· Differences in programming languages are sometimes slight, but at other times substantial. 

· C++:

if (int_rate > 100) message_box("Interest rate error");

· Pascal:

if int_rate > 100 then message_box('Interest rate error');



Programming Language Design and Evolution

Specific and General Purpose Languages

· Many programming languages are created with a specific purpose. 

· database processing (SQL)
· "artificial intelligence"
· multimedia processing (html)
· Special-purpose languages are not used much beyond their area of specialization.
· General purpose languages can be used for any task. 

· Pascal: designed as a teaching language (purposefully kept simple).
· C: developed to be translated efficiently into fast machine code, with a minimum of housekeeping.
· C++: adds "object oriented programming" aspects to C.
Planned Languages

· Planned languages (such as Pascal and Ada) are carefully designed to anticipate the needs of future users.
· More thought goes into planned languages.
· Features of planned languages tend to be more related to one another.
· Designers pay more attention to readability and consistency.
· Well designed languages are easier to use and learn.
Incremental Growth

· C and C++ are languages that grew in increments; as the users of the language perceived shortcomings, they added features: 

· 1972 - original design of C by Dennis Ritchie (link). Many compilers add different features, sprouting dialects of C.
· 1985 - Bjarne Stroustrup of AT&T adds object oriented features to C, creating C++. 
· 1989 - ANSI standard of C developed to resolve differences among the several version of C.
· 1998 - Standards developed for most recent version of C++.
· Grown languages tend to be messy; different features are added by people with different tastes.
· Grown languages are modified in a hurry to solve a specific need, without considering the consequences.
· Grown languages accumulate a patchwork of features that do not necessarily interact well together.
· Grown languages have an edge in the marketplace (C++ allows programmers to use new features without throwing away old C code).
· At this time, C++ is the premier language for general-purpose programming.
· The purpose of our course is not to teach you all of C++ but to use C++ for teaching you the art and science of writing computer programs!
Compiling a Simple Program (hello.cpp)
#include <iostream>
using namespace std;
int main()
{ cout << "Hello, World!\n";
  return 0;
}
· C++ is case sensitive (main, Main and MAIN are different names)
· C++ has freeform layout (spaces and line breaks are not important) 
· Good taste dictates that you use readable program layout.
· #include<iostream> - read the file iostream.h that contains the definition for the stream input/output package.
· using namespace std; - all names in the program belong to the "standard namespace"
· int main () { ... } defines a function called main. A function is a collection of instructions that carry out a particular task.
· The statements (instructions) inside the body (inside the curly braces { ... }) of the main function are executed one by one.
· Each statement ends with a semicolon ;
· The sequence of characters enclosed in quotations marks ("Hello, World\n") is called a string. 

· Escape sequence\n indicates a newline.
· Use \" to display quotes.
· return denotes the end of the main function. The zero value is a signal that the program ran successfully.
	Syntax 1.1: Simple Program
header files
using namespace std;
int main()
{
   statements
   return 0;
}
Example: 
#include <iostream>
using namespace std;
int main()
{
   cout << "Hello, World!\n";
   return 0;
}

Purpose: 
A simple program, with all program instructions in a main function.



Errors (Syntax and Logic Errors)

· Syntax error or compile-time error: 
· Something violates the language rules.
· Compiler finds the error. 

cot << "Hello, World!\n";
cout << "Hello, World!\";

· Run-time error: 

· Program compiles and runs but the operation system terminates the execution.
· Impossible operation, for example division by zero.
· Program author must test and find the error. 
· Overflow and underflow errors can occur when the result of a calculation is outside a computer's numeric range (i.e. either very big, 101000 or very small, 
· 10-1000).
· Logic error 
· Program doesn't do what it's supposed to do - it will compile and run but its output will be wrong. 
· Program author must test and find the error. 

cout << "Hell, World\n";

· Calculation precision (roundoff error) 

· A value cannot be represented precisely
· Example: 1/3 = 0.333333...; 1 - 3*(1/3) = 0.000001
· Structuring programs so that an error in place does not trigger a disastrous response is called defensive programming.
· A program error is commonly called a bug; special software tools called debuggers help you locate bugs.


The Compilation Process

[image: image3]
· The C++ source code is your program.
· The compiler is a program that translate your C++ code into object code.
· Object code consists of machine instructions and information on how to load the program into memory.
· A linker program takes the object code from your program and the code from the various libraries and builds them into an executable file.
· Libraries contain the (already translated) code used by your program (such as iostream).
· hello.cpp --> hello.o or hello.obj --> hello or hello.exe
· Edit -> Compile -> Debug Loop
[image: image4]


Algorithms

· A planning process must precede implementing a computer program.
· The computer needs a systematic approach for finding solutions: a series of steps that involves no guesswork.
· An algorithm is a solution technique (description of steps) that is unambiguous, executable, and terminating. 

· Unambiguous - no room for guesswork or creativity.
· Executable - each step can be carried out in practice.
· Terminating - the process will eventually come to an end.
	You put $10,000 into a bank account that earns 5% interest per year. How many years does it take for the account balance to be double the original?


· Step 1: Start with the table
	After Year 
	Balance

	0 
	$10,000 


· Step 2: Repeat steps 2a-2c while balance < $20,000 
· Step 2a. Add a new row to the table 
· Step 2b. In column 1 of the new row, put one more than the preceding year's value 
· Step 2c. In column 2, place the value of the preceding balance value, multiplied by 1.05.
· Step 3: Report the last number in the year column as the number of years required to double the investment 



Lecture  3: Fundamental Data Types

Lecture Goals

· To understand integer and floating point numbers
· To write arithmetic expressions in C++
· To appreciate the importance of comments and good code layout
· To be able to define and initialize variables and constants
· To be able to change the values of variables through assignment
· To use the standard C++ string type to define and manipulate character strings
· To be able to write simple programs that read numbers and text, process the input, and display the results


Number Types (coins1.cpp)

Consider the following simple problem: 
I have 8 pennies, 4 dimes, and 3 quarters in my purse. What is the total value of the coins?

#include <iostream>
using namespace std;
int main()
{  int pennies = 8;
   int dimes = 4;
   int quarters = 3;
   double total = pennies * 0.01 + dimes * 0.10 + quarters * 0.25;
                 /* total value of the coins */
   cout << "Total value = " << total << "\n";
   return 0;
 }
· Integer numbers (int) are whole numbers without a fractional part. 

· Includes zero and negative numbers
· Used for storing values that are conceptually whole numbers (e.g. coins)
· Processed faster and require less storage space (than floating point numbers)
· Floating-point numbers (double) have decimal points (in US standard). 

· Floating-point numbers are 1.2; 0.001; -0.12; 1e-2; 13E2; -2.9e-2; etc.
	Syntax 2.1: Output Statement
cout << expression1 << expressioun2 << ... << expressionn;
Example: 
cout << pennies;
cout << "Total value = " << total << "\n";
Purpose: 
Prints the values of one or more expressions.



· Use the asterisk * for multiplication (not dot or cross). 
· Comments are denoted by /* comment text */ or // comment text 

· Ignored by the compiler. 
· Explains the program to other programmers or yourself. 
	Syntax 2.2: Comments
/* comment text */
// comment text
Example: 
/* total value of coins */
// total value of coins
Purpose: 
Add a comment to help the human reader understand the program.



· Variables are locations in memory that can hold values of a particular type.
· Variable naming rules (symbolic names, identifiers):
· Names must start with a letter. 
· Remaining characters are letters, digits or underscore_ (no spaces or special symbols)
· You cannot use reserved words (as int, return, etc.).
· Variable names are case-sensitive (e.g. Area and area are different names).
· To avoid any possible confusion we will never use any uppercase letters in variable names. 
· Each variable has: 

· Type (e.g. int or double)
· Name (e.g. pennies)
· Value (e.g. 8)
	Syntax 2.3: Variable Definition Statement
type_name variable_name;
type_name variable_name = initial_value;
Example: 
int pennies = 8;
double total;
Purpose: 
Defines a new variable of a particular type, and optionally supply an initial value.





Input and Output (coins2.cpp)
The program could ask how many coins I have of any kind, and then compute the total. 

#include <iostream>
using namespace std;
int main()
{  cout << "How many pennies do you have? ";
   int pennies;
   cin >> pennies;
   cout << "How many nickels do you have? ";
   int nickels;
   cin >> nickels;
 
   cout << "How many dimes do you have? ";
   int dimes;
   cin >> dimes;
   cout << "How many quarters do you have? ";
   int quarters;
   cin >> quarters;
   double total = pennies * 0.01 + nickels * 0.05 +
                  dimes * 0.10 + quarters * 0.25;
                      /* total value of the coins */
   cout << "Total value = " << total << "\n";
   return 0;
 }
· Input stream operator (>>) reads console input: 
cin >> pennies; 

· The program waits for the user to type in a number and Enter key.
· The number is placed into the variable, and the program executes the next statement.
· If user doesn't enter appropriate input, then the stream fails (sets cin in "failed" state). All subsequent input also fails.
· Can read multiple values: 
cin >> pennies >> nickels >> dimes >> quarters; 

· User enters input separated by spaces or newlines, e.g.
8 0 4 3 

or 
8
0
4
3

· Input is buffered. If you type two inputs on one line, the second one is saved for the next input statement.
	Syntax 2.4: Input Statement
cin >> variable1 >> variable2 >> ... >> variablen;
Example: 
cin >> pennies;
cin >> first >> middle >> last;
Purpose: 
Read the value for one or more variables in from the console.





Assignment (coins3.cpp)

Let us compute the value of the coins by keeping a running total.

#include <iostream>
 using namespace std;
 
 int main()
 {  cout << "How many pennies do you have? ";
    int count;
    cin >> count;
    double total = count * 0.01;
 
    cout << "How many nickels do you have? ";
    cin >> count;
    total = count * 0.05 + total;

    cout << "How many dimes do you have? ";
    cin >> count;
    total = count * 0.10 + total; 

    cout << "How many quarters do you have? ";
    cin >> count;
    total = count * 0.25 + total; 

    cout << "Total value = " << total << "\n";
    return 0;
 }
Assignment (Assignment Operator)

· = operator assigns the value of the expression on the right to the variable on the left. 

total = pennies * 0.01;
total = count * 0.05 + total;

· Compute the value of the nickel contribution, add to it the value of the running total, and place the result again into the memory location total.
[image: image5]
· Do not confuse the assignment operation with algebraic equality. 
	Syntax 2.5: Assignment
variable = expression;
Example: 
total = pennies * 0.01;
Purpose: 
Store the value of an expression in a variable.



Assignment (Increment and Decrement)

· Assignments like month = month + 1; are very common in programming. 
[image: image6]
· This assignment increments the variable month.
· C++ uses a special shorthand for increment: 
month++; // add 1 to month
· C++ also supports decrement: 
month--; // subtract 1 from month


Constants (volume2.cpp)

#include <iostream>
using namespace std;
int main()
{  double bottles;
   cout << "How many bottles do you have? ";
   cin >> bottles;
   double cans;
   cout << "How many cans do you have? ";
   cin >> cans;
   const double BOTTLE_VOLUME = 2.0;
   const double CAN_VOLUME = 0.355;
   double total = bottles * BOTTLE_VOLUME + cans * CAN_VOLUME;
   cout << "The total volume is " << total << " liter.\n";
   return 0;
 }
· Giving symbolic names to constants makes programs easier to read and modify.
· Example: Suppose you switch from 2-liter bottle to half gallon bottles: 

· Must find every 2 in program.
· Decide if number represents bottle volume, or something else.
· Replace with 1.893 if appropriate.
· Constants mean only changing a program at one location.
	Syntax 2.7: Constant Definition
const type_name constant_name = initial_value;
Example: 
const double LITER_PER_OZ = 0.029586
Purpose: 
Define a new constant of a particular type and supply its value.
  




Arithmetic

· All four basic arithmetic operations are supported by C++: 

· Addition and subtraction: + -
· Multiplication and division: * /
· Multiplication and division bind more strongly than addition and subtraction.
· Use parentheses to indicate the order in which the subexpressions should be evaluated. 

	[image: image7]
	a + b / 2

	[image: image8]
	( a + b ) / 2


· In division, if at least one of the numbers is a floating-point number, the result is a floating point number: 
9.0 / 4.0   /* 2.25 */
9 / 4.0     /* 2.25 */
9.0 / 4     /* 2.25 */
· If both numbers are integers, then the result is an integer: 
9 / 4      /* 2 */
· To get the remainder of division between two integers, use the modulus operator %: 

9 % 4      /* 1 remainder */
Arithmetic (coins4.cpp)
#include <iostream>
 using namespace std;
 int main()
 {  cout << "How many pennies do you have? ";
    int pennies;
    cin >> pennies;
    cout << "How many nickels do you have? ";
    int nickels;
    cin >> nickels;
 
    cout << "How many dimes do you have? ";
    int dimes;
    cin >> dimes;
    cout << "How many quarters do you have? ";
    int quarters;
    cin >> quarters;
    int value = pennies + 5 * nickels + 10 * dimes + 25 * quarters;
    int dollar = value / 100;
    int cents = value % 100;
    cout << "Total value = " << dollar << " dollar and "
                             << cents << " cents\n";
    return 0;
 }
	Syntax 2.8: Function Call
function_name(expression1,expressioun2, ..., expressionn);
Example: 
sqrt(x)
pow(z + y, n)
Purpose: 
The result of calling a function and supplying the values for the function parameters.
  


Arithmetic (cmath Library Functions)

	Function
	Description

	sqrt(x)
	square root of x

	pow(x, y)
	xy

	sin(x)
	sine of x (in radians)

	cos(x)
	cosine of x (in radians)

	tan(x)
	tangent of x (in radians)

	exp(x)
	ex

	log(x)
	(natural log) ln(x), x > 0

	log10(x)
	(decimal log) lg(x), x > 0

	ceil(x)
	smallest integer >= x

	floor(x)
	largest integer <= x

	fabs(x)
	absolute value |x|


Arithmetic (Analyzing an Expression)

[image: image9]


Strings

· A string is a sequence of characters.
· To use the string type, include the header file for strings: #include<string>.
· C++ strings are enclosed in quotes, which are not part of the string.
· The string type behaves like number types with respect to declaration, assignment, output and input: 

string name = "John"; // declaration and initialization
name = "Carl";        // assignment
cout << name << ", please enter your name:"; // output
cin >> name;          // input (stops at first space)
· Use the statement 
getline(cin, name);
to read all keystrokes until the Enter key; e.g. should the user type 
Harry Hacker
Strings (Member Functions)

· The number of characters in a string is called the length of the string.
· You can compute the length of the string using the length() function.
· The length function is a member function, and must be invoked using the dot notation. 
	Name
	Purpose

	s.length()
	The length of s

	s.substr(i, n)
	The substring of length n of s starting at index i

	getline(f, s)
	Read string s from the input stream f

	Syntax 2.9: Member Function Call
expression.function_name(expression1,expressioun2, ..., expressionn)

Example: 
name.length()
name.substr(0, n - 1)

Purpose: 
The result of calling a function and supplying the values for the function parameters.



Strings (Substrings)

· The substr(start, length) member function is used to extract substrings. 
string greeting = "Hello, World!\n";
string sub = greeting.substr(0,4);
/* sub is "Hell" */
· The position numbers in a string start at 0. The last character is always one less than the length of the string. 
	H
	e
	l
	l
	o
	,
	
	W 
	o
	r
	l
	d
	!
	\n

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13


· string w = greeting.substr(7, 5); 
	H
	e
	l
	l
	o
	,
	
	W 
	o
	r
	l
	d
	!
	\n

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13


Strings (Concatenation)

· The + operator concatenates two strings. 
string fname = "Harry";
string lname = "Hacker";
string name = fname + " " + lname;
· One or both strings surrounding the + must be a variable. 

Strings (initials.cpp)
#include <iostream>
 #include <string>
 using namespace std;

 int main()
 {  cout << "Please enter your full name (first middle last): ";
    string first;
    string middle;
    string last;
    cin >> first >> middle >> last;
    string initials = first.substr(0, 1) + middle.substr(0, 1)
                                         + last.substr(0, 1);
    cout << "Your initials are " << initials << "\n";
 
    return 0;
 }
Strings (Output Formatting)

· Unformatted output: 

cout << pennies << " " << pennies * 0.01 << "\n";
cout << nickels << " " << nickels * 0.05<< "\n";
cout << dimes << " " << dimes * 0.1 << "\n";
cout << quarters << " " << quarters * 0.25 << "\n";
will produce (form1.cpp):
 1 0.01
 12 0.60
 4 0.40
 120 30.00

· To format output we use the manipulators accessed by including #include<iomanip>
· The setw() manipulator sets the field width of the next output.
· The setprecision() manipulator is used to set the precision of the next floating point number.
· By using the fixed manipulator, you ensure that trailing zeros are displayed.
· The sequence of commands 

cout << fixed << setprecision(2);
cout << setw(8) << pennies << " "
     << setw(8) << pennies * 0.01 << "\n";
cout << setw(8) << nickles << " "
     << setw(8) << nickles * 0.05<< "\n";
cout << setw(8) << dimes << " "
     << setw(8) << dimes * 0.1 << "\n";
cout << setw(8) << quarters << " "
     << setw(8) << quarters * 0.25 << "\n";

creates the table (form2.cpp): 

       1     0.01
      12     0.60
       4     0.40
     120    30.00



Lecture 4: Objects

Lecture Goals

· To become familiar with objects
· To learn about the properties of several sample classes that were designed for this book
· To be able to construct objects and supply initial values
· To understand member functions and the dot notation
· To be able to modify and query the state of an object through member functions
· To write simple graphics programs containing points, lines, circles and text
· To be able to select appropriate coordinate systems
· To learn how to process user input and mouse clicks in graphic programs 
· To develop test cases that validate the correctness of your program


Constructing Objects

· An object is a value that can be created, stored and manipulated in a programming language.

string greeting = "Hello";

cout << greeting.substr(0,4);
· Every object in C++ must belong to a class.
· A class is a data type (like int or double) that is programmer defined, whereas int and double are defined by the designers of the C++ language.
· We will learn to work with the class Time, the class Employee, and 4 shape classes. 

· Remember, these are programmer defined and not part of standard C++.
· To use the Time class we must include the file that contains its definition: 

#include "ccc_time.h"
· We use " " instead of < > because the file is not a standard (system) header. 
· The name stands for Computing Concepts with C++ Essentials.
· Creating any object is called construction.
· We can construct an object just like we create any variable. 

Time sometime; 

· We initialize an object by passing construction parameters when the object is created. 

Time day_end = Time(23, 59, 59); 
/* the last second of the day */

  The shorthand in this very common situation is: 
Time day_end(23, 59, 59); /* the last second of the day */

· Creating objects without parameters is called default construction. No parameters means not parenthesis! The Time class creates an object with the current time. 

Time now; /* the time this object is created */
Time later(); /* NO! */

· An object can be created anytime by supplying the class name with (or without) parameters. The assignment operator changes the value of the object variable. 

sometime = Time(12, 5, 18); /* we already declared sometime */
	Syntax 3.1: Constant Object Construction
Class_name(construction parameters);

Example: 
Time(19, 0, 0);

Purpose: 
Construct a new object for use in an expression.



	Syntax 3.2: Object Variable Definition
Class_name variable_name(construction parameters);

Example: 
Time homework_due(19, 0, 0);

Purpose: 
Define a new object variable and supply parameter values for initialization.





Using Objects

· A function applied to an object with the dot notation is called a member function.
· The Time class has several member functions used to find the state of the object: 

now.get_seconds(); /* returns the seconds value of now */
now.get_minutes(); /* returns the minutes value of now */
now.get_hours(); /* returns the hours value of now */

· You can add a certain number of seconds to the time: 

now.add_seconds(1000); 
/* add 1000 seconds to the time stored in now */

Using Objects (time1.cpp)
01: #include <iostream>
02: using namespace std;
03: 

04: #include "ccc_time.h"
05: 

06: int main()
07: {  Time wake_up(9, 0, 0);
08:    wake_up.add_seconds(1000); /*  a thousand seconds later */
09:    cout << wake_up.get_hours() << ":" << wake_up.get_minutes()
10:         << ":" << wake_up.get_seconds() << "\n";
11: 

12:    return 0; 
13: }
· The Time class does not have any member functions used to set the state of the object to avoid abuse: 

now.set_hours(2); /*NO! Not a supported member function*/
now.set_hours(9999); /* NO! Doesn't make sense */

· The Time class does provide other member functions to facilitate other actions: 

now.add_seconds(1000); /* Changes now to move by 1000 seconds */
now.seconds_from(day_end); 
/* Computes number of seconds between now and day_end */

Using Objects (time2.cpp)
01: #include <iostream>
02: using namespace std;
03: 

04: #include "ccc_time.h"
05: 

06: int main()
07: {  Time now;
08:    Time day_end(23, 59, 59);
09:    long seconds_left = day_end.seconds_from(now);
10: 

11:    cout << "There are " << seconds_left
12:         << " seconds left in this day.\n";
13: 

14:    return 0;
15: }


Real-Life Objects

· Object-oriented programming allows us to easily model entities from real life.
· As an example, the text provides a simple Employee class: 

· All employees have names and salaries which are set at construction. 

Employee harry("Hacker, Harry", 45000.00);

· Both attributes can be queried. 

cout << "Name: " << harry.get_name() << "\n";
cout << "Salary: " << harry.get_salary() << "\n";

· Only salary can be set. 

harry.set_salary(new_salary);

Real-Life Objects (employee.cpp)
01: #include <iostream>
02: using namespace std;
03: 

04: #include "ccc_empl.h"
05: 
06: int main()
07: {  Employee harry("Hacker, Harry", 45000.00);
08: 

09:    double new_salary = harry.get_salary() + 3000;
10:    harry.set_salary(new_salary);
11: 

12:    cout << "Name: "   << harry.get_name()   << "\n";
13:    cout << "Salary: " << harry.get_salary() << "\n";
14: 

15:    return 0;
16: }


Displaying Graphical Shapes

· Console applications read input from the keyboard (using cin) and display text output on the screen (using cout).
· Graphics applications read keystrokes and mouse clicks and display graphical shapes such as lines and circles through a window object called cwin. 

Circle c;
...
cout << c; /* NO! Won't display the circle */
cwin << c; /* The circle will appear in the graphics window */

· To use graphics program you must include the header ccc_win.h.
· This graphics package was created for use in the textbook (it's not part of standard C++).
Graphics Structures (Points)

· A point has an x- and y-coordinate. 

cwin << Point(1,3);

[image: image10]
Graphics Structures (Circles)

· A circle is defined by a center point and a radius. 

Point p(1,3);
cwin << p << Circle(p,2.5);

[image: image11]
Graphics Structures (Lines)

· Two points can be joined by a line. 

Point p(1,3);
Point q(4,7);
Line s(p,q);
cwin << s;

[image: image12]
Graphics Structures (Messages)

· You can display text anywhere you like using Message objects. 

· You point parameter specifies the upper left corner of the message. 

Point p(1,3);
Message greeting(p, "Hello, Window!");
cwin << greeting;

[image: image13]
Graphics Structures (move)

· All graphical classes (points, circles, lines, messages) implement the move() member function. 
· obj.move(dx, dy) changes the position of the object, moving the entire object by dx units in the x-direction and dy units in the y-direction. 
· Either or both of dx and dy can be zero or negative.
Graphics Structures (square.cpp)

#include "ccc_win.h"
 
 int ccc_win_main()
 {  Point p(1, 3);
    Point q = p;
    Point r = p;
    q.move(0, 1);
    r.move(1, 0);
    Line s(p, q);
    Line t(p, r);
    cwin << s << t;
    s.move(1, 0);
    t.move(0, 1);
    cwin << s << t;
 
    return 0;
 }
[image: image14]
Graphics Structures (Summary)

	Name
	Purpose

	Point(x,y)
	Constructs a point at location (x, y)


	p.get_x()
	Returns the x-coordinate of a point p

	p.get_y()
	Returns the y-coordinate of a point p

	p.move(dx,dy)
	Moves point by (dx, dy)



	
	Name
Purpose
Circle(p,r)
Constructs a circle with center p and radius r
c.get_center()
Returns the center point of a circle c
c.get_radius()
Returns the radius of a circle c.

c.move(dx,dy)
Moves circle c by (dx, dy)



	Name
Purpose
Line(p,q)
Constructs a line joining points p and q
l.get_start()
Returns the starting point of line l
l.get_end()
Returns the end point of line l
l.move(dx,dy)
Moves line l by (dx, dy)


	Name
Purpose
Message(p,s)
Constructs a message with starting point p and text string s
Message(p,x)
Constructs a message with starting point p and label equal to the number x
m.get_start()
Returns the starting point of message m.

m.get_text()
Gets the text string message m
m.move(dx,dy)
Moves message m by (dx, dy)




Choosing a Coordinate System

· The default coordinate system for the book's graphics classes: 

· The origin (0, 0) is at the center.
· x- and y- axis range from -10.0 to 10.0
· The user can reset the coordinate system: 

cwin.coord(x_left, y_top, x_right, y_bottom)

· Example: For the following data, the x-axis should range from 1 to 12, and the y-axis should range from 11 to 33: 

cwin.coord(1, 11, 12, 33);
	Month
	Average Temperature
	Month
	Average Temperature

	January
	11
	July
	33

	February
	13
	August
	32

	March
	16
	September
	29

	April
	20
	October
	23

	May
	25
	November
	16

	June
	31
	December
	12


Output is now in terms of the new coordinate system: 
cwin << Point(1, 11);
cwin << Point(2, 13);
/* etc. */

Getting Input from the Graphics Window

· You cannot use cin to get input from a graphics window.
· To read text input from a graphics window, use the get_string() method. 

string response = cwin.get_string(prompt);

Example: 

string name = cwin.get_string("Please type your name:");

· The prompt and input occurs in an input area at either the top or bottom of the graphics window (depending on your system). 

· To read numerical data input from a graphics window, use the get_int() or get_double() method. 
int age = cwin.get_int("Please enter your age:");

· To prompt the user for a mouse input, use the get_mouse() method. 
Point center = cwin.get_mouse("Enter center of circle:");

Getting Input from the Graphics Window (click.cpp)
#include "ccc_win.h"
 
 int ccc_win_main()
 {  string name = cwin.get_string("Please, enter your name: ");
    Circle c(Point(0, 0), 1); 
    cwin << c;
    Point m = cwin.get_mouse("Please, click inside the circle.");
    cwin << m << Message(m, name + ", you clicked here.");
    return 0; 
 }
	Name
	Purpose

	cwin << x
	Display the object x (a point, circle, line, message)

	cwin.cord(x1,y1,x2,y2)
	Set the coordinate system. (x1,y1) is the top left corner, (x2,y2) is the bottom right corner 

	cwin.get_string(p)
	Displays prompt p and returns the entered string.

	cwin.get_int(p)
	Displays prompt p and returns the entered integer.

	cwin.get_double(p)
	Displays prompt p and returns the entered floating-point value.

	cwin.get_mouse(p)
	Displays prompt p and returns the mouse click point. 

	cwin.clear()
	Clears window.




Comparing Visual and Numerical Information

· Look at the same problem both visually and numerically.
· Example: Determine the intersection between a line and a circle (with center (0,0)); the user specifies a radius and a distance between the horizontal line and the x-axis.
· Plot the line and the circle (centered on the screen) .
· We would like to know the exact coordinates of the intersection points.
· Calculate the coordinates
· Plot both points and label them with numerical values.
· If you do it right, these two points will show up right on top of the actual intersections in the picture.
Comparing Visual and Numerical Information (intsect2.cpp)

#include <cmath>
using namespace std;

#include "ccc_win.h"

int ccc_win_main()
{  double radius = cwin.get_double("Rasdius: ");
   Circle c(Point(0, 0), radius);

   double b = cwin.get_double("Line position: ");
   Line s(Point(-10, b), Point(10, b));

   cwin << c << s;

   double root = sqrt(radius * radius - b * b);
   
   Point p1(root, b);
   Point p2(-root, b);

   Message m1(p1, p1.get_x());   
   Message m2(p2, p2.get_x());

   cwin << p1 << p2 << m1 << m2;
   
   return 0; 
}

If line doesn't meet the circle, then the program will attempt to compute a square root of a negative number, and it will terminate with "Run-time error - math error".
· The protection against this situation will be the topic of the next lecture.


Lecture 5: Basic Control Flow

Lecture Goals

· To be able to implement decisions and loops using if and while statements
· To understand statement blocks
· To learn how to compare integers, floating-point numbers, and strings
· To develop strategies for processing input and handling input errors
· To understand the Boolean data type


The if Statement

· The if statement is used to implement a decision.
· It has two parts: a test and a body. If the test succeeds, the body of the statement is executed.
· Example:
if (area < 0)
   cout << "Error: Negative area.\n";

	Syntax 4.1: if Statement 

if (condition) statement
Example:
if (x >= 0) y = sqrt(x);
Purpose:
Execute the statement if the condition is true.



· Multiple statements can be grouped together in a block statement by enclosing them in braces { }:

if (area < 0)
{  cout << "Error: Negative area.\n";
   return 1;
}

	Syntax 4.2: Block Statement 

{ statement1
  statement2
  ...
  statement
}
Example:
{ double length = sqrt(area);
  cout << area << "\n";
}
Purpose:
Group several statements into a block that can be controlled by another statement.



The if Statement (area1.cpp)

#include <iostream>
#include <cmath>
using namespace std;

int main()
{  double area;
   cout << "Please enter the area of a square: ";
   cin >> area;
   if (area < 0)
   {  cout << "Error: Negative area.\n";
      return 1;
   }

   /* now we know that area is >= 0  */
   double length = sqrt(area);
   cout << "The side length of the square is " 
        << length << "\n";

   return 0;
}


The if/else Statement

· The if/else consists of a condition of two alternatives.
· The first alternative is performed if the condition is true.
· The second alternative is performed if the condition is false.
if (area >= 0)
   cout << "The side length is " << sqrt(area) << "\n";
else
   cout << "Error: Negative area.\n";

· The if/else statement is a better choice than a pair of if statements with complementary conditions.
if (area >= 0) /* complementary conditions */
   cout << "The side length is " << sqrt(area) << "\n";
if (area < 0)  /* complementary conditions */
   cout << "Error: Negative area.\n";

	Syntax 4.3: if Statement 

if (condition) statement1 else statement2
Example:
if (x >= 0) y = sqrt(x); else cout << "Bad input\n";
Purpose:
Execute the first statement if the condition is true, the second statement if the condition is false.



The if/else Statement (area2.cpp)

#include <iostream>
#include <cmath>
using namespace std;

int main()
{  double area;
   cout << "Please enter the area of a square: ";
   cin >> area;

   if (area >= 0)
      cout << "The side length is " << sqrt(area) << "\n";
   else
      cout <<"Error: Negative area.\n";

   return 0;
} 
The selection operator

C++ has a selection operator of the form:

test ? value1 : value2
The value of this expression is either value1 if the test passes or value2 if it fails. 
   y = x >= 0 ? x : -x;

is equivalent to
   if (x >= 0) y = x;
   else y = -x;
	    Expression
	Statement

	  x >= 0 ? x : -x
	if (x >= 0) y = x;
else y = -x;

	  y = x
	y = x;

	  -b + sqrt(d)
	-b + sqrt(d);




Relational Operators

· C++ has six relational operators to implement conditions:
	C++ 
	Description
	Example
	Notes

	>
	greater than
	a > 5
	

	>=
	greater than or equal to
	x >= 5
	Be careful to not write => 
Remember that the symbols appear in the order you say them

	<
	less than
	x < 10
	

	<= 
	less than or equal to
	X <= 11
	Be careful to not write =< 
Remember that the symbols appear in the order you say them

	==
	equal to
	a == 5
	Don't confuse with =  which is assignment

	!=
	not equal
	a != 5
	The ! is supposed to be the line that "crosses through" the equal sign


Relational Operators (comparing strings)

· The relational operators listed above can also be used to compare strings using lexicographic comparison (dictionary ordering).
· "Dick"  <  "Tom",  "Main"  <  "main" are true.
· When comparing strings, corresponding letters are compared until one of the strings ends or the first difference is encountered.
· "car" is less than "truck", i.e. the condition "car" < "truck" is true.
	c
	a
	r


	t
	r
	u
	c
	k


· "car" is less than "cargo", i.e. the condition "car" < "cargo" is true.
	c
	a
	r


	c
	a
	r
	g
	o


· "cargo" is less than "cathode", i.e. the condition "cargo" >= "cathode" is false.
	c
	a
	r
	g
	o


	c
	a
	t
	h
	o
	d
	e


ASCII Table

(American Standard Code for Information Interchange) 
0-31 are control codes, for example "/n" (newline) has ASCII code 10. 

  32:   33:!  34:"  35:#  36:$  37:%  38:&  39:'  40:(  41:)
  42:*  43:+  44:,  45:-  46:.  47:/  48:0  49:1  50:2  51:3 
  52:4  53:5  54:6  55:7  56:8  57:9  58::  59:;  60:<  61:= 
  62:>  63:?  64:@  65:A  66:B  67:C  68:D  69:E  70:F  71:G 
  72:H  73:I  74:J  75:K  76:L  77:M  78:N  79:O  80:P  81:Q 
  82:R  83:S  84:T  85:U  86:V  87:W  88:X  89:Y  90:Z  91:[ 
  92:\  93:]  94:^  95:_  96:`  97:a  98:b  99:c 100:d 101:e 
 102:f 103:g 104:h 105:i 106:j 107:k 108:l 109:m 110:n 111:o 
 112:p 113:q 114:r 115:s 116:t 117:u 118:v 119:w 120:x 121:y 
 122:z 123:{ 124:| 125:} 126:~ 127:�  128:Ђ 129:Ѓ 130:‚ 131:ѓ 
 132:„ 133:… 134:† 135:‡ 136:€ 137:‰ 138:Љ 139:‹ 140:Њ 141:Ќ 
 142:Ћ 143:Џ 144:ђ 145:‘ 146:’ 147:“ 148:” 149:• 150:– 151:— 
 152:� 153:™ 154:љ 155:› 156:њ 157:ќ 158:ћ 159:џ 160:  161:Ў 
 162:ў 163:Ј 164:¤ 165:Ґ 166:¦ 167:§ 168:Ё 169:© 170:Є 171:« 
 172:¬ 173:​  174:® 175:Ї 176:° 177:± 178:І 179:і 180:ґ 181:µ 
 182:¶ 183:· 184:ё 185:№ 186:є 187:» 188:ј 189:Ѕ 190:ѕ 191:ї 
 192:А 193:Б 194:В 195:Г 196:Д 197:Е 198:Ж 199:З 200:И 201:Й 
 202:К 203:Л 204:М 205:Н 206:О 207:П 208:Р 209:С 210:Т 211:У 
 212:Ф 213:Х 214:Ц 215:Ч 216:Ш 217:Щ 218:Ъ 219:Ы 220:Ь 221:Э 
 222:Ю 223:Я 224:а 225:б 226:в 227:г 228:д 229:е 230:ж 231:з 
 232:и 233:й 234:к 235:л 236:м 237:н 238:о 239:п 240:р 241:с 
 242:т 243:у 244:ф 245:х 246:ц 247:ч 248:ш 249:щ 250:ъ 251:ы 
 252:ь 253:э 254:ю 255:� 

This is Windows-1251 encoding table.


Input Validation

· Input validation is an application of the if statement that verifies the user has given reasonable input.
· Example: 

double area;
cin >> area;
· The user types "five" and hits return! Causing cin to fail, variable area is not set. 

· After every input a good program will test (invoking fail() member-function of ifstream class):
if (cin.fail())
· The actual input should also be validated, even if the type is correct.
if (area < 0)
· Other strategies 

· A stream variable can be the condition of an if statement: 

if (cin)
   /* the stream did not fail */
else
   /* the stream failed */
· The expression cin >> x has a value, namely cin. It follows that we can chain the >> operators: 

cin >> x >> y    /* which means (cin >> x) >> y */
We can use the stream expression as the condition of an if operator: 

if (cin >> x) ...
means "read x, and if that didn't make cin fail, then continue". 

Input Validation (area3.cpp)

#include <iostream>
#include <cmath>
using namespace std;
 
int main()
{  double area;
   cout << "Please enter the area of a square: ";
   cin >> area;
 
   if (cin.fail())
   {  cout << "Error: Bad input\n";
      return 1;
   }
 
   if (area < 0)
   {  cout << "Error: Negative area.\n";
      return 1;
   }
 
   cout << "The side length is " << sqrt(area) << "\n";
   return 0;
}


Simple Loops

· Recall the investment problem from Lecture 1.
	You put $10,000 into a bank account that earns 5% interest per year. How many years does it take for the account balance to be double the original?


· Step 1: Start with the table
(int year = 0; double balance = 10000;)
	After Year 
	Balance

	0 
	$10,000 


· Step 2: Repeat steps 2a-2c while balance < $20,000
(balance < 20000) 
· Step 2a. Add a new row to the table 
· Step 2b. In column 1 of the new row, put one more than the preceding year's value
(year++;) 
· Step 2c. In column 2, place the value of the preceding balance value, multiplied by 1.05
(balance = balance*1.05;)
· Step 3: Report the last number in the year column as the number of years required to double the investment
· A loop is a block of code that can be performed repeatedly.
· A loop is controlled by a condition that is checked each time through the loop. The block of code executes while the condition remains true.
· The while statement makes a check before each execution of the code.
/* how long does it take an investment to double? */
while (balance < 2 * initial_balance)
{  balance = balance * ( 1 + rate / 100);
   year++;
}

	Syntax 4.4: while Statement 

while (condition) statement
Example:
while (x >= 10) x = sqrt(x);
Purpose:
Execute the statement while the condition remains true.



Simple Loops (doublinv.cpp)

#include <iostream>
using namespace std;

int main()
{  double rate = 5;
   double initial_balance = 10000;
   double balance = initial_balance;
   int year = 0;

   while (balance < 2 * initial_balance)
   {  balance = balance * (1 + rate / 100);      
      year++;
   } 
   cout << "The investment doubled after " 
        << years << " years.\n";

   return 0;
}


Processing a Sequence of Inputs (Sentinels)

· Whenever you read a sequence of input values, you need to have some method of terminating the input.
· A number used to signal termination is called a sentinel.
· Sentinels only work if there is some restriction on the input.
· Common sentinel values are 0 or -1.
Processing a Sequence of Inputs (sentinel.cpp)

#include <iostream>
using namespace std;
 
int main()
{  double sum = 0;
   int count = 0;
   double salary = 0;
   while (salary != -1)
   {  cout << "Enter a salary, -1 to finish: ";
      cin >> salary;
      if (salary != -1) 
      {  sum = sum + salary;
         count++;
      }
   }
   if (count > 0)
      cout << "Average salary: " << sum / count << "\n";

   return 0;
} 
Processing a Sequence of Inputs (Causing the Stream to Fail)

· When reading input from the console, you can close the input stream manually.
· Ctrl + Z in Windows
· Ctrl + D in UNIX
· Reading from a closed stream causes the stream to enter the failed state.
Processing a Sequence of Inputs (maxtemp.cpp)

#include <iostream>
using namespace std;
 
int main()
{  double next;
   double highest;
 
   cout << "Please enter the temperature values:\n";
   if (cin >> next) highest = next;
   else
   {  cout << "No data!\n";
      return 1;
   }
   while (cin >> next)
     if (next > highest) highest = next;   

   cout << "The highest temperature is " << highest << "\n";
   return 0;
}


Using Boolean Variables

· The bool type can hold exactly two values, denoted false and true.
· Boolean variables are named after George Boole (1815-1864), a pioneer in the study of logic.
· Example:
bool more = true;
while (more)
{  cin >> next;
   if (cin.fail()) more = false;
   else
   {       // process next
   }
}

· Don't: 

while(more == false) /* don't */
while(more != true)  /* don't */

· Use: 

while(more)



Lecture 6: Functions I

Lecture Goals

· To be able to program functions and procedures
· To become familiar with the concept of parameter passing
· To recognize when to use value and reference passing
· To appreciate the importance of function comments
Functions as Black Boxes

· A function is a piece of code assigned to a name. We have used a number of functions that were provided by the C++ system library. 
· sqrt(x) - computes the square root of a floating point number x
· getline(cin, s) - reads a line from the cin stream
· Functions can be thought of as black boxes - you don't need to know the internals of the code.
· Example: 
int main()
{ cout << "Enter a positive number: ";
  double x;
  cin >> x;
  x = sqrt(x); // sqrt is running
  cout << "The result is " << x << "\n";
  return 0;
}

· The execution of main() is temporarily suspended while the function sqrt is running. 

· The sqrt function becomes active and computes the output or return value - using some method that will yield the concrete result. 

· The return value is transferred back to main, which resume the computation using the return value. 

· Many functions have input values or parameters that are transferred or passed into the function. 
· The x in y = sqrt(x);
· Both the x and the y in z = pow(x,y);
· Could be an expression as in sqrt(b * b - 4 * a * c);
	function 
	parameter 

	sqrt(x)
	variable

	sqrt(2.5)
	constant

	sqrt(x+1.02)
	expression


	
	function
number of 
parameters
sqrt(x)
1
pow(x,y)
2
p.get_x()
0



	member-function
	implicit parameter
	implicit parameter type

	harry.get_salary()
	harry
	Employee

	t.add_seconds(10)
	t
	Time

	msg.move(dx,dy)
	msg
	Message


· Many functions have output or return values. Each function returns a value of a particular type. 
	function
	return value

	sqrt(x)
	double type

	c.get_center()
	Point type

	m.get_text()
	string type

	getline(cin,s)
	no return value


· Each function takes values of particular types. 
· You cannot compute sqrt("Harry");
· You cannot assign string s = sqrt(5.5);
	function
	requirements for parameters

	fabs(w)
	the parameter w must be double type, constant or variable

	t.second_from(t1)
	the parameter t1 must be an object from Time class, constant or variable

	getline(cin,s)
	the first parameter must be cin, the second parameter must be a variable of  the type string




Writing Functions (Function Definition)

· Let us compute the value of a saving account with an initial balance of $1000 after 10 years with the interest rate of p percent (compound interest).
· To create a function, we must supply its return type, name, and a list of parameters (types and  names). 
double future_value(double p)

· For the duration of the function, the parameter is stored in a parameter variable (in this example, p).
· The body of the function is delimited by braces (just like main()): 
double future_value(double p)
{
   . . . 
}

· Code is included to perform the computation. The result is returned to the caller function. 
double future_value(double p)
{  double b = 1000 * pow(1 + p / 100, 10);
   return b;
}

Writing Functions

 #include <iostream>
 #include <cmath>
 using namespace std;
 
 double future_value(double p)
 {  double b = 1000 * pow(1 + p / 100, 10);
    return b;
 }
 
 int main()
 {  cout << "Please enter the interest rate in percent: ";
    double rate;
    cin >> rate;
 
    double balance = future_value(rate);
    cout << "After 10 years, the balance is " 
         << balance << "\n";
 
    return 0;
 }
	Syntax 5.1: Function Definition
return_type function_name(parameter1, ..., parametern)
{
   statements
}
Example: 
double abs(double x)
{  if (x >= 0) return x;
   else return -x;
}
Purpose: 
Define a functions and supply its implementation.



Writing Functions (Hard Wired Values)

· The future_value function is flawed because the starting amount of the investment and the number of years are hard-wired.
· Hard-wiring prevents reuse of functions: 
· Computing the balance after 20 years.
· Computing the balance with a different initial balance.
· We avoid hard-wiring values into functions by passing them in as additional parameters.
· Functions are more valuable when they are reusable.
double future_value(double initial_balance, double p, int n)
{  double b = initial_balance * pow(1 + p / 100, n);
   return b;
}

double balance = future_value(1000, rate, 10);

· futval.cpp


Function Comments

· We must comment every function, even if it seems silly.
· Comments are for human readers, not compilers.
· There is no universal standard for comment layout, but our textbook uses the javadoc style. 
· An @param entry explaining each parameter
· An @return entry describing the return value
· Comments do not explain the implementation, but the idea.
· Writing comments first, before writing the function code, to test your understanding of what you need to program.
 /**
   Computes the value of an investment with compound interest.
   @param initial_balance - the initial value of the investment
   @param p the interest rate per period in percent
   @param n the number of periods the investment is held
   @return the balance after n periods
*/
double future_value(double initial_balance, double p, int n)
{  double b = initial_balance * pow(1 + p / 100, n);
   return b;
}


Return Values

· When the return statement is processed, the function exits immediately. We put the exceptional cases at the beginning. 
double future_value(double initial_balance, double p, int n)
{  if (n < 0) return 0;
   if (p < 0) return 0;
   double b = initial_balance * pow(1 + p / 100, n);
   return b;
}
· It is important that every branch of a function return a value. 
double future_value(double initial_balance, double p, int n)
{  if (p >= 0) 
      return initial_balance * pow(1 + p / 100, n);
   /* Error */
}
· The last statement of every function ought to be a return statement.
· Functions that return a truth (boolean) value is called a predicate. 
· The function approx_equal(x, y) tests whether two floating point numbers x and y are approximately equal (approximation relative error). 
bool approx_equal(double x, double y)
{  const double EPSILON = 1E-14;
   if (x == 0) return fabs(y) <= EPSILON;
   if (y == 0) return fabs(x) <= EPSILON;
   return fabs(x - y) / max(fabs(x), fabs(y)) <= EPSILON;
}
	Syntax 5.3: return statement
 return expression;
Example: 
 return pow(1 + p / 100, n);
Purpose: 
Exit a function, returning the value of the expression as the function result.



Return Values (approx.cpp)

 #include <iostream>
 #include <algorithm>
 using namespace std;
 /**
    Tests whether two floating-point numbers are 
    approximately equal.
    @param x a floating-point number
    @param y another floating-point number
    @return true if x and y are approximately equal
 */
 bool approx_equal(double x, double y)
 {  const double EPSILON = 1E-14;
    if (x == 0) return fabs(y) <= EPSILON;
    if (y == 0) return fabs(x) <= EPSILON;
    return fabs(x - y) / max(fabs(x), fabs(y)) <= EPSILON;
 }
 
 int main()
 {  double x;
    cout << "Enter a number: ";
    cin >> x;
 
    double y;
    cout << "Enter another number: ";
    cin >> y;
 
    if (approx_equal(x, y))
       cout << "The numbers are approximately equal.\n";
    else
       cout << "The numbers are different.\n";
    return 0;
 } 

Parameters 

· When a function starts, its parameter variables are initialized with the expressions in the function call. 
b = future_value(total / 2, rate, year2 - year1);

· It is entirely legal to modify the values of the parameter variables later. 
double future_value(double initial_balance, double p, int n)
{  p = 1 + p / 100;
   double b = initial_balance * pow(p, n);
   return b;
}

· Many programmers consider this practice bad style.


Side Effects

· An externally observable effect of a function is called a side effect. 
· Displaying characters on the screen (including error messages).
· Updating variables outside the functions.
· Terminating the program.
· A function should leave no trace of its existence except for returning a value.
· Functions that print values become worthless in certain situations. 
· Graphics programs that have no output streams.
· Programs where the user's language is not English.
· Programs that don't want to print the value!
· Ideally, a function computes a single value and has no other side effect.


Procedures

· A function without a return value is called a procedure. 
print_time(now);
· The missing return value is indicated by the keyword void. 
void print_time(Time t)
{  cout << t.get_hours() << ":";
   if (t.get_minutes() < 10) cout << "0";
   cout << t.get_minutes() << ":";
   if (t.get_seconds() < 10) cout << "0";
   cout << t.get_seconds();
}
· Since a procedure does not have a return value, it must have a side effect.
· Ideally, a procedure has only one side effect. Commonly, procedures return a status value.
Procedures (printime.cpp)

#include <iostream>
 #include <iomanip>
 using namespace std;
 
 #include "ccc_time.h"
 /**
    Print a time in the format h:mm:ss
    @param t the time to print
 */
 void print_time(Time t)
 {  cout << t.get_hours() << ":" << setw(2) << setfill('0') 
         << t.get_minutes() << ":" << setw(2) 
         << t.get_seconds() << setfill(' ');
 }
 
 int main()
 {  Time liftoff(7, 0, 15);
    Time now;
    cout << "Liftoff: ";
    print_time(liftoff);
    cout << "\n";
 
    cout << "Now: ";
    print_time(now);
    cout << "\n";
 
    return 0;
 }


Reference Parameters

· The parameter variables we have looked at so far are called value parameters. 
· Value parameters are separate variables from the ones in main() (or another calling function). 
· Modification of value parameters does not affect the original value. 
· A reference parameter does not create a new variable, but refer to an existing variable. 
· Any change in a reference parameter is actually a change in the variable to which it refers. 
· Reference parameters are indicated using an & between the parameter's type and name. 
void raise_salary(Employee& e, double by)
{  double new_salary = e.get_salary() * ( 1 + by / 100);
   e.set_salary(new_salary);
}

	Syntax 5.4: Reference Parameters
 type_name& parameter_name
Example: 
 Employee& e
 int& result
Purpose: 
Define a parameter that is bound to a variable in the function call, to allow the function to modify that variable.



Reference Parameters (raisesal.cpp)

 #include <iostream> 
 using namespace std;
 
 #include "ccc_empl.h"
 
 /**
    Raise an employee salary 
    @param e employee receiving raise
    @param by the percentage of the raise
 */
 void raise_salary(Employee& e, double by)
 {  double new_salary = e.get_salary() * (1 + by/100);
    e.set_salary(new_salary);
 }
 
 int main()
 {  Employee harry("Hacker, Harry", 45000.00);
    raise_salary(harry, 5);
    cout << "New salary: " << harry.get_salary() << "\n";
    return 0;
 }
	Syntax 5.5: Constant Reference Parameters
 const type_name& parameter_name
Example: 
 const Employee& e
Purpose: 
Define a parameter that is bound to a variable in the function call, to avoid the cost of copying the variable into the parameter variable.



· Reference parameters are more efficient than value parameters because they do not make copies of the parameters.
· Passing variables by constant reference improves performance, but prevents the function from changing the value of the parameter.
· Objects make good constant reference parameters because they tend to have several attributes that need to be copied. Passing numbers by constant reference is generally not worth the effort.


Lecture 7: Functions II

Lecture Goals

· To be able to determine the scope of variables
· To minimize the use of side effects and global variables
· To develop strategies for decomposing complex tasks into simpler ones
· To document the responsibilities of functions and their callers with preconditions
Parameters (Overview)

· When the function starts, its parameter variables are initialized with the expressions in the function call.
· A reference parameter is not a new variable but a reference to the existing variable.
· Passing variables by constant reference improves performance, but prevents the function from changing the value of the parameter.
	parameter variable
	reference parameter
	constant reference parameter

	new variable, copying
	reference to an existing variable
	constant reference to a value

	input parameter
	may be input and should be output parameter
	input parameter

	can modify the parameter (bad style)
	should modify the parameter
	cannot modify the parameter

	can be bound to any expression
	must be bound to the variable
	can be bound to any expression



[raisesal.cpp] 


Variable Scope and Global Variables (Variable Scope)

· You can have variables with the same name in different functions.
· The part within a program in which a variable is visible is known as the scope of the variable.
· The scope of a variable extends from its definition to the end of the block in which it was defined.
· Example: 
double future_value(double initial_balance, double p, int n)
{  double r = initial_balance * pow(1 + p / 100, n);
   return r;
}

int main()
{  cout << "Please enter the interest rate in percent: ";
   double r;
   cin >> r;

   double balance = future_value(10000, r, 10);
   cout << "After 10 years the balance is" << balance
      << "\n";

   return 0;
}

· Global variables are variables that are defined outside functions.
· A global variable is visible to all functions that are defined after it.
· Sometimes global variables cannot be avoided (cin, cout, and cwin), but you should make every effort to avoid global variables in your program.
Variable Scope and Global Variables (global.cpp)

 #include <iostream>
 #include <cmath>
 using namespace std;
 
 double balance; 
 /** 
    Accumulates interest in the global variable balance
    @param p the interest rate in percent
    @param n the number of periods the investment is held
 */
 void future_value(int p, int n)
 {  balance = balance * pow(1 + p / 100, n); 
 }
 
 int main()
 {  balance = 10000;
    future_value(5, 10);
    cout << "After ten years, the balance is "
         << balance << "\n";
    return 0;
 }


Stepwise Refinement

· One of the most powerful strategies for problem solving is the process of stepwise refinement. 
· To solve a difficult task, break it down into simpler tasks; then keep breaking down the simpler tasks into even simpler ones, until you are left with tasks that you know how to solve. 


From Pseudocode to Code

Write a function that turns a number into a text string, for example 274 turns into 
"two hundred seventy four". 

· Before starting to program, we need to have a plan.
· Any time you need something more than once, it's a good idea to turn that into a function..
· Rather than writing the entire function, begin by writing the comments.
· Writing the function 
/**
   Turns a number into its English name.
   @param n a positive integer < 1 000 000 (e.g. 274)
   @return the name of n (e.g. "two hundred seventy four")
*/
string int_name(int n);
· Break the problem into sub-tasks and design subprograms. 
/**
   Turns a digit into its English name
   @param n an integer between 1 and 9
   @return the name of n ("one" ... "nine")
*/
string digit_name(int n);

/**
   Turns a number between 10 and 19 into its English name.
   @param n an integer between 10 and 19
   @return the name of n ("ten"..."nineteen")
*/
string teen_name(int n);

/**
   Gives the English name of a multiple of 10
   @param n an integer between 2 and 9
   @return the name of 10 * n ("twenty"..."ninety")
*/
string tens_name(int n);
· What is missing? 
· For hundreds, we show the digit name then write "hundred".
· For 100 - 999, we can put calls to functions above together to write number.
· For numbers over 1000, we call functions above to write the number of thousands, print "thousand", then call the above functions again to write the rest of the number.
· When algorithms are complicated, we first write them as pseudocode. 
· Pseudocode is somewhere between C++ and English. 
string int_name(int n)
{ int c = n; /* the part that needs to be converted */
  string r;  /* the return value */

  if (c >= 1000)
  {   r = name of thousands in c + "thousand"
      remove thousands from c
  }

  if (c >= 100)
  {   r = r + name of hundreds in c + "hundreds"
      remove hundreds from c
  }

  if (c >= 20)
  {   r = r + name of tens in c
      remove tens from c
  }

  if (c >= 10)
  {   r = r + name of c
      c = 0
  }

  if (c > 0)
      r = r + name of c;

  return r;
}
From Pseudocode to Code (intname.cpp)

#include <iostream>
 #include <string>
 using namespace std;
 /**
    Turn a digit into its English name
    @param n an integer between 1 and 9
    @return the name of n ("one" . . . "nine")
 */
 string digit_name(int n)
 {  if (n == 1) return "one";
    if (n == 2) return "two";
    if (n == 3) return "three";
    if (n == 4) return "four";
    if (n == 5) return "five";
    if (n == 6) return "six";
    if (n == 7) return "seven";
    if (n == 8) return "eight";
    if (n == 9) return "nine";
    return "";
 }
 /**
    Turn a number between 10 and 19 into its English name
    @param n an integer between 10 and 19
    @return the name of n ("ten" . . . "nineteen")
 */
 string teen_name(int n)
 {  if (n == 10) return "ten";
    if (n == 11) return "eleven";
    if (n == 12) return "twelve";
    if (n == 13) return "thirteen";
    if (n == 14) return "fourteen";
    if (n == 15) return "fifteen";
    if (n == 16) return "sixteen";
    if (n == 17) return "seventeen";
    if (n == 18) return "eighteen";
    if (n == 19) return "nineteen";
    return "";
 }
 /**
    Give the English name of a multiple of 10
    @param n an integer between 2 and 9
    @return the name of 10 * n ("twenty" . . . "ninety")
 */
 string tens_name(int n)
 {  if (n == 2) return "twenty";
    if (n == 3) return "thirty";
    if (n == 4) return "forty";
    if (n == 5) return "fifty";
    if (n == 6) return "sixty";
    if (n == 7) return "seventy";
    if (n == 8) return "eighty";
    if (n == 9) return "ninety";
    return "";
 }
 /**
    Turn a number into its English name
    @param n a positive integer < 1,000,000
    @return the name of n (e.g. "two hundred seventy four")
 */
 string int_name(int n)
 {  int c = n; /* the part that still needs to be converted */
    string r; /* the return value */
 
    if (c >= 1000)
    {  r = int_name(c / 1000) + " thousand";
       c = c % 1000;
    }
    if (c >= 100)
    {  r = r + " " + digit_name(c / 100) + " hundred";
       c = c % 100;
    }
    if (c >= 20)
    {  r = r + " " + tens_name(c / 10);
       c = c % 10;
    }
    if (c >= 10)
    {  r = r + " " + teen_name(c);
       c = 0;
    }
    if (c > 0)
       r = r + " " + digit_name(c);
 
    return r;
 }
 
 int main()
 {  int n;
    cout << "Please enter a positive integer: ";
    cin >> n;
    cout << int_name(n);
    return 0;
 }
Pseudocode can be easier to understand than a verbal description. 
· It's best not to muddy the pseudocode with minor details. 
· The pseudocode did not take into account spaces between the words. 
· Note that the helper functions needed to be declared before the int_name function. 
· The int_name function calls itself (called recursion): 
if (c >= 1000)
{  r = int_name(c / 1000) + " thousand";
   c = c % 1000;
}
· When a function invokes itself, it must give a simpler assignment to the second copy of itself. 


Walkthroughs

· Before entrusting a subprogram to a computer, it is a good idea to put it through a dry run or walkthourgh. 
· Take out an index card and write down the name of the function you want to study. 
· Write down the names of the function variables in a table, since you will update them as you walk through the code. 
	int_name(416)

	c
	r

	416
	""


· When your function calls another function, you can either start another card, or assume that it performs correctly. 
	int_name(416)

	c
	r

	416
	""


	
	 
	digit_name(4)
Returns "four"



· As the function progresses, update the variables by crossing out old values and writing down the new ones. 
	int_name(416)

	c
	r

	 416 
	 "" 

	16
	"four hundred"


	int_name(416)

	c
	r

	 416 
	 "" 

	 16 
	 "four hundred" 

	0
	"four hundred sixteen"




Preconditions

· What should a function do when called with an inappropriate value (e.g. sqrt(-1))? 
· A function can fail safely. For example, the digit_name function simply returns an empty string when it is called with an unexpected value. 
· A function can terminate. Many functions in the cmath library will terminate if given an illegal value.
· The most brutal method is to print a message and terminate the entire program.
· C++ has a very sophisticated mechanism called an exception. 
· Whenever possible, it is desirable to avoid termination of the program (although that is hard).
· We will discuss using the assert macro. 
	Syntax 5.6 : Assertions
 assert(expression);
Example: 
 assert(x >= 0);
Purpose: 
If the expression is true, do nothing. If the expression is false, terminate the program, displaying the file name, line number, and expression.



· To use assert() you must #include<cassert>.
· assert is really a macro - a special instruction to the compiler that inserts complex code into the program. 
double future_value(double initial_balance, double p, int n)
{  assert(p >= 0);
   assert(n >= 0);

   return initial_balance * pow(1 + p / 100, n);
}
· [futval0.cpp]
· As a programmer, you must fully document any preconditions that the function must meet. That is, the legal values for function input. 
/**
   Computes the value of an investment with compound interest.
   @param initial_balance the initial value of the investment
   @param p the interest rate in percent; must be >= 0
   @param n the number of periods the investment is held; must be >= 0
   @return the balance after n periods
*/
· If a function call does not satisfy the preconditions, the function is free to do anything. 
· Function causes the program to terminate.
· Return a "safe" default value. 


Lecture 8: Classes

Lecture Goals

· To be able to implement your own classes
· To master the separation of interface and implementation
· To understand the concept of encapsulation
· To design and implement accessor and mutator member functions
· To understand object construction
· To learn how to distribute a program over multiple source files 
Discovering Classes

· If you find yourself defining a number of related variables that all refer to the same concept, define a class that abstracts the concept and contains these variables as data fields.
· Example: Suppose you are reading information about computers: 

· Model Name
· Price
· Score between 0 and 100
· Sample data: 

ACMA P600
995
77

Alaris Nx868
798
57

AMAX Powerstation 600
999
75

· We are trying to find the product for which the value (score/price) is highest. Sample code excerpt: 
if (next_score / next_price > best_score / best_price)
{  best_name = next_name;
   best_score = next_score;
   best_price = next_price;
}
Discovering Classes (bestval.cpp)

#include <iostream>

#include <string>

using namespace std;

int main()

{  string best_name = "";

   double best_price = 0;

   int best_score = 0;

   bool more = true;

   while (more)

   {  string next_name;

      double next_price;

      int next_score;

      cout << "Please enter the model name: ";

      getline(cin, next_name);

      cout << "Please enter the price: ";

      cin >> next_price;

      cout << "Please enter the score: ";

      cin >> next_score;

      string remainder; /* read remainder of line */

      getline(cin, remainder); 

      if (next_score / next_price > best_score / best_price)

      {  best_name = next_name;

         best_score = next_score;

         best_price = next_price;

      }     

      cout << "More data? (y/n) ";

      string answer;

      getline(cin, answer);

      if (answer != "y") more = false;

   }

   cout << "The best value is " << best_name

        << " (Score: " << best_score

        << " Price: " << best_price << ")\n";

   return 0;

}
Each of these sets of variables describes a product (a best product, and the next product read in). 
· We need to develop a Product class. 


Interface

· To define a class, we first need to specify an interface.
· The interface consists of all member functions (methods) we want to apply to objects of that type.
· The interface is specified in the class definition.
· Example: Product class member functions: 

· Make a new product.
· Read in a product object.
· Compare two products and find out which one is better.
· Print a product.
· Product class header: 

class Product {
public:
   Product();
   void read();
   bool is_better_than(Product b) const;
   void print() const;
private:
   implementation details
};

· The first member function is a constructor: the function that is used to initialize new objects.
· This constructor has no parameters so it is called a default constructor.
· Default constructors are automatically used when you construct an object without parameters. 

Product best; /* default construction */

· As a general rule, every class should have a default constructor.
· The read() member function is a mutator function - an operation that modifies the object.
· The last two member functions are accessor functions - functions that query the object for some information without changing it.
· The keyword const indicates that the implicit parameter object is not modified by the member function.
	Syntax 6.1: Class Definitions
class Class_name {
public:
   constructor declarations
   member function declarations
private:
   data fields
};
Example: 
class Point {
public:
   Point (double xval, double yval);
   void move(double dx, double dy);
   double get_x() const;
   double get_y() const;
private:
   double x;
   double y;
};
Purpose: 
Define the interface and data fields of a class.



· To use objects in our programs, we only need to use the interface.
· The interface definition of the class just declares the constructors and member functions.
Interface (product1.cpp)

/* 
   This program compiles but doesn't run. 
   See product2.cpp for the complete program.
*/
#include <iostream>
#include <string>
using namespace std;

class Product {
public:
   Product();
   void read();
   bool is_better_than(Product b) const;
   void print() const;
private:
};

int main()
{  Product best;

   bool more = true;
   while (more)
   {  Product next;
      next.read();
      if (next.is_better_than(best)) best = next;

      cout << "More data? (y/n) ";
      string answer;
      getline(cin, answer);
      if (answer != "y") more = false;
   }
   cout << "The best value is ";
   best.print();

   return 0;
}


Encapsulation

· Classes are broken into public and private sections. To use objects in our program we only need to use the interface. To enable any function to access the interface functions, they are placed in the public section. 

· The data items are defined in the private sections of the class definition.
· Example: Every product object has a name field, a price field and a score field. 

class Product {
public:
   Product();
   void read();
   bool is_better_than(Product b) const;
   void print() const;
private:
   string name;
   double price;
   int score;
};

· Only constructors and member functions of the class can access private data. 
· Hiding data is called encapsulation. Encapsulation forces indirect access to the data, guaranteeing that it cannot accidentally be put in an incorrect state.
· Example: 

class Time {
public:
   Time();
   Time(int h, int m, int s);
   void add_seconds(long s);

   long seconds_from(Time t) const;
   int get_seconds() const;
   int get_minutes() const;
   int get_hours() const;
private:
   int hours;   /* conjecture */
   int minutes; /* conjecture */
   int seconds; /* conjecture */
};

· Suppose the programmer could access data fields of the Time class directly. This allows to create invalid time: 

Time liftoff(19, 30, 0);
/* liftoff is delayed by six hours */
/* won't compile, but suppose it did */
liftoff.hours = liftoff.hours + 6;

· Does this mean liftoff is at 25:30:00? 
· The constructors and add_seconds function guarantee that all times are always valid, thanks to the encapsulation mechanism.


Member Functions

· Each member function advertised (declared) in the class interface must be implemented separately.
· A Class_name:: prefix makes it clear that we are defining a member function for that class. 

void Product::read()
{  cout << "Please enter the model name: ";
   getline(cin, name);
   cout << "Please enter the price: ";
   cin >> price;
   cout << "Please enter the score: ";
   cin >> score;
   string remainder; /* read the remainder of the line */
   getline(cin, remainder);
}

· It is perfectly legal to have member functions in other classes as well; it is important to specify exactly which function goes with which class.
· A member function is called object.function_name(). 

next.read();

· When we defining an accessor function, we must supply the keyword const following the closing parenthesis of the parameter list. 
· When the keyword const is used in the declaration, it must also be placed in the member function definition. 

void Product::print() const
{  cout << name
        << " Price: " << price
        << " Score: " << score << "\n";
}

· The keyword const indicates that the member function will not modify the object that called it.
· When you refer to a data field in a member function, such as name or price, it denotes the data field of the object for which the member function was called: 

best.print();

The Product::print() function prints best.name, best.score and best.price. 
· The object to which a member function is applied is called the implicit parameter.
· A parameter explicitly mentions in the function definition is called an explicit parameter. 

bool Product::is_better_than(Product b) const
{  if (b.price == 0) return false;
   if (price == 0) return true;
   return score / price > b.score / b.price;
}

if (next.is_better_than(best)) ...

	Syntax 6.2: Member Function Definition
return_type Class_name::function_name(parameter1, ..., parametern) [const]opt
{
   statements
}
Example: 
void Point::move(double dx, double dy)
{  x = x + dx; y = y + dy;
}
double Point::get_x() const
{  return x;
}
Purpose: 
Supply the implementation of a member function.





Default Constructors

· The purpose of a constructor is to initialize all data fields of an object.
· A constructor always has the same name as the class. 

Product::Product()
{  price = 0;
   score = 0;
}

· Most default constructors initialize the data fields to zero, but not always. 

· The Time class initializes to current time.
· Non-numeric data (e.g. string data) may have another value.
Default Constructors (product2.cpp)

#include <iostream>

#include <string>

using namespace std;

class Product {

public:

   /**

      Constructs a product with zero price and score.

   */

   Product();

   /**

      Reads in this product object.

   */   

   void read();

   /**

      Compares two product objects.

      @param b the object to compare with this object

      @retur true if this object is better than b

   */

   bool is_better_than(Product b) const;

   /**

      Print this product object

   */

   void print() const;

private:

   string name;

   double price;

   int score;

};

Product::Product()

{  price = 0;

   score = 0;

}

void Product::read()

{  cout << "Please enter the model name: ";

   getline(cin, name);

   cout << "Please enter the price: ";

   cin >> price;

   cout << "Please enter the score: ";

   cin >> score;

   string remainder; /* read remainder of line */

   getline(cin, remainder);

}

bool Product::is_better_than(Product b) const

{  if (price == 0) return false;

   if (b.price == 0) return true;

   return score / price > b.score / b.price;

}

void Product::print() const

{  cout << name

        << " Price: " << price

        << " Score: " << score << "\n";

}

int main()

{  Product best;

   bool more = true;

   while (more)

   {  Product next;

      next.read();

      if (next.is_better_than(best)) best = next;

      cout << "More data? (y/n) ";

      string answer;

      getline(cin, answer);

      if (answer != "y") more = false;

   }

   cout << "The best value is ";

   best.print();

   return 0;

} 



Constructors with Parameters

· It's possible to create a class with more than one constructor. 

Employee Fred; /* default construction */
Employee Harry("Harry Hacker", 40000); /* alternate construction */

· All constructors have the same name as the class, but have different parameter lists. 

class Employee {
public:
   Employee();
   Employee(string employee_name, double initial_salary);
   
   void set_salary(double new_salary);
 
   string get_name() const;
   double get_salary() const;
private:
   string name;
   double salary;
};

· Whenever two functions have the same name but are distinguished by their parameter types, the function name is overloaded.
· The second constructor sets the data fields of the new object based on the parameters. 

Employee::Employee(string employee_name, double initial_salary)
{  name = employee_name;
   salary = initial_salary;
}

	Syntax 6.3: Constructor Definition
Class_name::Class_name(parameter1, ..., parametern)
{ statements
}
Example: 
Point::Point(double xval, double yval)
{ x = xval; y = yval;
}
Purpose: 
Supply the implementation of a constructor.



· Sometimes a constructor gets more complex because one of the data fields is itself an object of another class with its own constructor.
· Example: suppose we modify the Employee class so that each Employee has scheduled work hours. 
class Employee {
public:
   Employee(string employee_name, double initial_salary,
      int arrive_hour, int leave_hour);
   . . .
private:
   string name;
   double salary;
   Time arrive;
   Time leave;
};

The constructor must initialize the time fields using the Time() constructor. 

Employee::Employee(string employee_name, double initial_salary,
   int arrive_hour, int leave_hour)
{
   name = employee_name;
   salary = initial_salary;
   arrive = Time(arrive_hour, 0, 0);
   leave = Time(leave_hour, 0, 0);
}



Accessing Data Fields

· Only member functions of a class are allowed to access the private data fields of objects of that class.  

void raise_salary(Employee& e, double percent)
{  e.salary = e.salary * (1 + percent / 100 ); /* Error */
}

· All other functions must go through the public interface of the class. Data fields must be accessed by accessor and mutator functions. 

void raise_salary(Employee& e, double percent)
{  e.set_salary(e.get_salary() * (1 + percent / 100 )); /* OK */
}

· Not every data member needs accessor functions (the Product class did not have a get_score() function).
· Not every get_ function needs a matching set_ function (the Time class can get_minutes() but not set_minutes()).
· Remember that implementation is supposed to be hidden - just because a class has member functions named get_ or set_ does not necessarily explain how the class is designed. 

class Time {
public:
   Time();
   Time(int h, int m, int s);
   void add_seconds(long s);

   long seconds_from(Time t) const;
   int get_seconds() const;
   int get_minutes() const;
   int get_hours() const;
private:
   long time_in_secs;
};

· The data representation is an internal implementation detail of the class that is invisible to the class user. 

Time::Time(int hour, int min, int sec)
{  time_in_secs = 60 * 60 * hour + 60 * min + sec;
}
 
int Time::get_minutes() const
{  return (time_in_secs / 60) % 60;
}
 
int Time::seconds_from(Time t) const
{  return time_in_secs - t.time_in_secs;
}



Comparing Member Functions with Nonmember Functions

· Consider the nonmember function 

void raise_salary(Employee& e, double percent)
{  double new_salary = e.get_salary() * (1 + percent / 100);
   e.set_salary(new_salary);
}

versus the member function 

void Employee::raise_salary(double percent)
{  salary = salary * (1 + percent / 100);
}

· A nonmember function is called with two explicit parameters. 

raise_salary(harry, 10);

· A member function is called using the dot notation, with one explicit parameter and one implicit parameter. 

harry.raise_salary(10);

· A member function can invoke another member function on the implicit parameter without using the dot notation. 

void Employee::print() const
{  cout << "Name: " << get_name()
        << "Salary: " << get_salary()
        << "\n";
}

· employee.cpp
· Member functions automatically (by default) pass the implicit parameter by reference. 
· Nonmember functions automatically (by default) pass their parameters by value. 
	
	Explicit Parameter
	Implicit Parameter

	Value Parameter
(not changed)
	Default
Example: 
void print(Employee);
print(harry);
	Use const
Example: 
void Employee::print()const;
harry.print();

	Reference Parameter
(can be changed)
	Use &
Example: 
void raiseSalary(Employee& e, double p);
raiseSalary(harry, 10);
	Default
Example: 
void Employee::raiseSalary(double p);
harry.raiseSalary(10);




Separate Compilation

· When your code gets large or you work in a team, you will want to split your code into separate source files. 

· Saves time: instead of recompiling the entire program, only recompile files that have been changed.
· Group work: separate programmers work on separate files.
· The header file (e.g. product.h) contains: 

· definitions of constants
· definitions of classes
· declarations of nonmember functions
· declarations of global variables
· The source file (e.g. product.cpp) contains 

· definitions of member functions
· definitions of nonmember functions
· definitions of global variables
Separate Compilation (product.h)

#ifndef PRODUCT_H

#define PRODUCT_H
#include <string>

using namespace std;

class Product {

public:

   /**

      Constructs a product with zero price and score.

   */

   Product();

   /**

      Reads in this product object.

   */   

   void read();

   /**

      Compares two product objects.

      @param b the object to compare with this object

      @retur true if this object is better than b

   */

   bool is_better_than(Product b) const;

   /**

      Print this product object

   */

   void print() const;

private:

   string name;

   double price;

   int score;

};

#endif 

Separate Compilation (product.cpp)

#include <iostream>

#include "product.h"

using namespace std;

Product::Product()

{  price = 0;

   score = 0;

}

void Product::read()

{  cout << "Please enter the model name: ";

   getline(cin, name);

   cout << "Please enter the price: ";

   cin >> price;

   cout << "Please enter the score: ";

   cin >> score;

   string remainder; /* read remainder of line */

   getline(cin, remainder);

}

bool Product::is_better_than(Product b) const

{  if (price == 0) return false;

   if (b.price == 0) return true;

   return score / price > b.score / b.price;

}

void Product::print() const

{  cout << name

        << " Price: " << price

        << " Score: " << score << "\n";

}
Separate Compilation (prodtest.cpp)

#include "product.h"

int main()

{  Product best;

   bool more = true;

   while (more)

   {  Product next;

      next.read();

      if (next.is_better_than(best)) best = next;

      cout << "More data? (y/n) ";

      string answer;

      getline(cin, answer);

      if (answer != "y") more = false;

   }

   cout << "The best value is ";

   best.print();

   return 0;

}
· Special code (preprocessor directives) for the compiler must be put in a header file to prevent the file from being compiled twice. 
#ifndef PRODUCT_H
#define PRODUCT_H
. . .
#endif

· The source file includes its own header file. 
#include "product.h"

· The source file does not contain a main function because many programs may use this class.
· Shared constants are placed in the header file.
· To share global variables among source files, declare them in a header file as extern. 
extern GraphicWindow cwin;

The source file contains the definition. 
GraphicWindow cwin;



Lecture 9: Advanced Control Flow I

Lecture Goals

· To recognize the correct ordering of decisions in multiple branches 
· To program conditions using Boolean operators and variables
· To understand nested branches and loops
· To be able to program loops with the for statement
Multiple Alternatives

· By using collections of if/else statements, a program can distinguish between multiple alternatives.
· Example: The user enters the name of a coin, and the program returns the value.
· This program has five alternatives to choose from: 

· "penny"
· "nickel"
· "dime"
· "quarter"
· erroneous input
· The order that the alternatives are checked is unimportant.
Multiple Alternatives (Coins Flowchart)

[image: image15.png]name Yes value
“penny™ o
Z 0.01
No
¥
name Yo value
= "nickel” A
L - 0.05
No

value
=01
¥
" name ™ ye value
quarter” > 0,25
No
v
Esmor
message





Multiple Alternatives (coins5.cpp)

 #include <iostream>

 #include <string>

 using namespace std;

 int main()

 {  cout << "Enter coin name: ";

    string name;

    cin >> name;

    double value = 0;

    if (name == "penny") value = 0.01;

    else if (name == "nickel") value = 0.05;

    else if (name == "dime") value = 0.10;

    else if (name == "quarter") value = 0.25;

    else

       cout << name << " is not a valid coin name\n";
    cout << "Value = " << value << "\n";

    return 0;

 }
In some cases, the order of the tests is important. 
· Example: A program that displays a description of the likely impact of an earthquake based on its magnitude on the Richter scale.
Multiple Alternatives (richter.cpp)

#include <iostream>

#include <string>

using namespace std;

int main()

{  cout << "Enter a magnitude on the Richter scale: ";

   double richter;

   cin >> richter;

   if (richter >= 8.0)

      cout << "Most structures fall\n";

   else if (richter >= 7.0)

      cout << "Many buildings destroyed\n";

   else if (richter >= 6.0)

      cout << "Many buildings considerably damaged, "

         << "some collapse\n";

   else if (richter >= 4.5)

      cout << "Damage to poorly constructed buildings\n";

   else if (richter >= 3.5)

      cout << "Felt by many people, no destruction\n";

   else if (richter >= 0)

      cout << "Generally not felt by people\n";

   else

      cout << "Negative numbers are not valid\n";

   return 0;

}
Note that the order of the tests ensures that the right results are printed (reverse the order of tests).
· Note that the if/else structure ensure the alternatives are exclusive. Independent if statements may cause a single input to print several messages (). 


Nested Branches

· Nested if/else statements can be used when there are two (or more) levels of decision making.
· Example: Taxes 

· There is a different table for each marital status (decision 1).
· Once you have found the right table, your are taxed differently according to your income (decision 2).
	If your status is Single and 
if the taxable income is over
	but not over
	the tax is
	of the amount over

	$0
	$21,450
	15%
	$0

	$21,450
	$51,900
	$3,217.50 + 28%
	$21,450

	$51,900
	
	$11,743 + 31%
	$51,900


	If your status is Married and 
if the taxable income is over
	but not over
	the tax is
	of the amount over

	$0
	$35,800
	15%
	$0

	$35,800
	$86,500
	$5,370.00 + 28%
	$35,800

	$86,500
	
	$19,566.00+ 31%
	$86,500


[image: image16.png]income
= 21,450

income
= 51,900

Yo singe SN
15% income 15%
brackst = 35,800 brackst
No
280 income N, Yes 28%
bracket = 86,500 | bracker
No
3% 3%
brackst brackst





· The two-level decision process is reflected in two levels of if statements.
· We say the income test is nested inside the test for filing status
· More complicated decisions may require deeper levels of nesting.
Nested Branches (tax.cpp)

#include <iostream>
#include <string>
using namespace std;

int main()
{  const double SINGLE_LEVEL1 = 21450.00;
   const double SINGLE_LEVEL2 = 51900.00;

   const double SINGLE_TAX1 = 3217.50;
   const double SINGLE_TAX2 = 11743.50;

   const double MARRIED_LEVEL1 = 35800.00;
   const double MARRIED_LEVEL2 = 86500.00;

   const double MARRIED_TAX1 = 5370.00;
   const double MARRIED_TAX2 = 19566.00;

   const double RATE1 = 0.15;
   const double RATE2 = 0.28;
   const double RATE3 = 0.31;

   double income;
   cout << "Please enter your income: ";
   cin >> income;

   cout << "Please enter s for single, m for married: ";
   string marital_status;
   cin >> marital_status;

   double tax;
   if (marital_status == "s")
   {  if (income <= SINGLE_LEVEL1)
         tax =  RATE1 * income;
      else if (income <= SINGLE_LEVEL2)
         tax = SINGLE_TAX1 + RATE2*(income - SINGLE_LEVEL1);
      else
         tax = SINGLE_TAX2 + RATE3*(income - SINGLE_LEVEL2);
   }
   else
   {  if (income <= MARRIED_LEVEL1)
         tax =  RATE1 * income;
      else if (income <= MARRIED_LEVEL2)
         tax = MARRIED_TAX1 + RATE2*(income - MARRIED_LEVEL1);
      else
         tax = MARRIED_TAX2 + RATE3*(income - MARRIED_LEVEL2);
   }
   cout << "The tax is $" << tax << "\n";
   return 0;
}


Boolean Operations

· An operator that combines test conditions is called a logical operator.
· The && (and) operator combines several tests into a new test that passes only when all the conditions are true.
· Example: Suppose you want to test whether your homework is due right now. The test passes only if both fields match. 

if (now.get_hours() == homework.get_hours() &&
    now.get_minutes() == homework.get_minutes())
       cout << "The homework is due right now!\n";

· hwdue1.cpp
· The || (or) operator combines two or more conditions and succeeds if at least one of the conditions is true.
· Example: A test whether an order is shipped to Alaska or Hawaii. 

if (state == "HI" || state == "AK")
    shipping_charge = 10.00;

· hwdue2.cpp
[image: image17.png]No
~«——< Minutes match?

Yes A

¥

Homework is
due now





· The && and || operators are computed using lazy evaluation: the expressions are evaluated from left to right, and evaluation stops as soon as the truth value (true or false) is determined. 

if (cin.fail() || area < 0) cout << "Input error.\n";


if (r >= 0 && -b / 2 + sqrt(r) >= 0) ...

· The ! (not) operator takes a single condition and evaluates to true if that condition is false and to false if that condition is true. 

if (!cin.fail()) quarters = quarters + n;

· Summary: 

	A
	B
	A && B

	true
	true
	true

	true
	false
	false

	false
	Any
	false


	
	
	A
B
A ||B
true
Any
true
true
false
true
false
false
false


	
	A
!A
true
false
false
true

	




DeMorgan's Law

· Humans generally have a hard time comprehending logical conditions with not operators applied to and/or expressions.
· Example: Suppose we want to charge a higher shipping rate if we don't ship within the continental United States. 

if (!(country == "USA" && state != "AK" && state != "HI"))
                      shipping_charge = 20.00;

· Is it not true that some people won't be confused by this code?
· DeMorgan's Law can be used to simplify these Boolean expressions.
· DeMorgan's Law has two forms: 

	not (A and B)
	is the same as
	not A or not B

	not (A or B)
	is the same as
	not A and not B


· Pay particular attention to the fact that the and and or operators are reversed by moving the not inwards.
· Example: 

state != "AK" && state != "HI"

means 

!(state == "AK") && !(state == "HI")

Applying DeMorgan's Law to the original expression yields 

!(state == "AK" || state == "HI")

Finally we have (lazy evaluation!) 

if (country != "USA" || state == AK" || state == "HI") ...



The for Loop

· The most common loop has the form 

i = start;
while (i <= end)
{  . . . 
   i++;
}

· Because this loop is so common, there is a special form for it. 

for (i = start; i <= end; i++)

· Example: Let us compute the function factorial, n! = 1.2.3.4...n. 
int product = 1;
for (int i = 1; i <= n; i++) product = product * i;

Syntax 7.1: for Statement

	Syntax 7.1 : for Statement
for (initialization_expression; condition; update_expression) statement
Example: 
for (int i = 1; i <= 10; i++) sum = sum + i;
Purpose:
Execute the initialization statement. While the condition remains true, execute the statement and update the expression.



[image: image18.png]Yes

LI

product =
product *
i







The for Loop (forfac.cpp)

#include <iostream>
using namespace std;

long forfac(int n)
{  long product = 1;
   for (int i = 1; i <= n; i++) product = product * i;
   return product;
}

int main()
{  cout << "Please enter a number: ";
   int n;
   cin >> n;  
   cout << n << "! = " << forfac(n) << "\n";
   return 0;
} 

· We can count down instead of up: 

for (int n = 10; n >= 0; n--) ...

· The increment or decrement need not be in step 1: 

for (x = -10; x <= 10; x = x + 0.5) ...

· It is possible to put unrelated conditions into the loop (bad taste): 

for (rate = 6; month--; cout << balance) ...



Lecture 10: Advanced Control Flow II

Lecture Goals

· To be able to program loops with the do/while statement
· To learn how to process character, word, and line input
· To learn how to read input from a file through redirection
· To implement approximations and simulations
The do Loop

· Sometimes you want to execute the body of a loop at least once and perform the loop test after the body was executed.
· The do/while loop serves that purpose. 

do
{ statements
}
while (condition);

· Example: A simple approximation algorithm computes square root (ancient Greeks):  the sequence 
x0 = a,  xn+1 = ( xn + a/xn ) / 2
converges and has a limit square root of a. 

do
{  xold = xnew;
   xnew = (xold + a / xold) / 2;
}
while (fabs(xnew - xold) > EPSILON);

[image: image19.png]xold

Xnew

Xnew
+a

(xold
xo1d)

~~

No





The do Loop (sqroot.cpp)
#include <iostream>

#include <cmath>

using namespace std;

int main()

{  cout << "Please enter a number: ";

   double a;

   cin >> a;

   

   const double EPSILON = 1E-14;

   double xnew = a;

   double xold;

   do

   {  xold = xnew;

      xnew = (xold + a / xold) / 2;

   }

   while (fabs(xnew - xold) > EPSILON);

   cout << "The square root is " << xnew << "\n";

   return 0;

}

	Syntax 7.2: do/while Statement
do statement while (condition);
Example: 
do x = sqrt(x); while (x >= 10);
Purpose: 
Execute the statement, then test the condition, and repeat the statement while the condition remains true.



Nested Loops

· How can we print a table of values?
· For example, this table tells you the fate of $10000 invested under various interest rates for a different number of years.
[image: image20.png]Rate 5years 10 years 15 years 20years 25 years 30 years

5.00 | 12762.82 | 16288.95 | 20789.28 | 26532.98 | 33863.55 | 43219.42
5.50 | 13069.60 | 17081.44 | 22324.76 | 29177.57 | 38133.92 | 49839.51
6.00 | 13382.26 | 17908.48 | 23965.58 | 32071.35 | 42918.71 | 5743491
6.50 | 13700.87 | 18771.37 | 25718.41 | 35236.45 | 48276.99 | 66143.66
7.00 | 14025.52 | 19671.51 | 27590.32 | 38696.84 | 54274.33 | 76122.55
7.50 | 14356.29 | 20610.32 | 29588.77 | 4247851 | 60983.40 | 87549.55
8.00 | 14693.28 | 21589.25 | 31721.69 | 46609.57 | 68484.75 | 100626.57
8.50 | 15036.57 | 22609.83 | 33997.43 | 51120.46 | 76867.62 | 115582.52
9.00 | 15386.24 | 23673.64 | 36424.82 | 56044.11 | 86230.81 | 132676.78
9.50 | 15742.39 | 24782.28 | 39013.22 | 61416.12 | 96683.64 | 152203.13
10.00 | 16105.10 | 25937.42 | 41772.48 | 67275.00 | 108347.06 | 174494.02





· Here is the pseudocode: 

print table header
double rate;
for (rate = RATE_MIN; rate <= RATE_MAX; 
     rate = rate + RATE_INCR)
{  print table row
}

· How do we print a table row? You need to program another loop. 

int year;
for (year = YEAR_MIN; year <= YEAR_MAX;
     year = year + YEAR_INCR)
{  balance = future_value(initial_balance, rate, year);
   cout << setw(10) << balance;
}

· It's a good idea to print the table header as a loop as well. 

cout << "Rate     ";
int year;
for (year = YEAR_MIN; year <= YEAR_MAX;
     year = year + YEAR_INCR)
{  cout << setw(2) << year << " years";
}

· Once everything is put together, you have the loop printing a single row nested in the loop that traverses the interest rates.

Nested Loops (table.cpp)

#include <iostream>

#include <iomanip>

#include <cmath>
using namespace std;

int main()

{  const double RATE_MIN = 5;

   const double RATE_MAX = 10;

   const double RATE_INCR = 0.5;

   const int YEAR_MIN = 5;

   const int YEAR_MAX = 30;

   const int YEAR_INCR = 5;

   /* print table header */

   cout << " Rate  ";

   int year;

   for (year = YEAR_MIN; year <= YEAR_MAX; 

        year = year + YEAR_INCR)

      cout << setw(2) << year << " years  ";
   cout << "\n";

   cout << fixed << setprecision(2);

   double rate;

   double initial_balance = 10000;

   for (rate = RATE_MIN; rate <= RATE_MAX; 

        rate = rate + RATE_INCR)

   {  

      /* print table row */

       int year;

       cout << setw(5) << rate;

       for (year = YEAR_MIN; year <= YEAR_MAX;

          year = year + YEAR_INCR)

       {  double balance = 

             initial_balance * pow(1 + rate/100, year);

          cout << setw(10) << balance;

       }

       cout << "\n";

   }

   return 0;

}
Sometimes the iteration count of the inner loop depends on the outer loop.
· Example: printing a triangle shape. 

[]
[][]
[][][]
[][][][]

· To print n rows, use the loop. 

for (int i = 1; i <= n; i++)
{  print triangle row
}

· Each row contains i boxes. 

for (int j = 1; j <= i; j++) cout << "[]";
cout << "\n";

· Putting the two loops together yields 

for (int i = 1; i <= n; i++)
{  for (int j = 1; j <= i; j++) cout << "[]";
   cout << "\n";
}

· triangle.cpp


Processing Text Input

· When processing text input, is the input structured as a sequence of characters, words, or lines?
· To input a sequence of words, use the loop 

string word;
while (cin >> word)
{  process word
}

· cin >> word has the same value as cin - it is the same test as !cin.fail().
Processing Text Input (words.cpp)

#include <iostream>

#include <string>

using namespace std;

int main()

{  int count = 0;

   string word;

   while (cin >> word) count++;

   cout << count << " words.\n";

   return 0;

}
You would type text in, and at the end of the input the program would tell you how many words you typed. (You would never want to use such a program!)
· The program makes a lot of sense if input is read from a file.
· To link a file to the input of a program you type: 
words < article.txt
on a command line. The input instructions no longer expect input from the keyboard but from the file article.txt. 
· Input redirection on the command line.
· If you can redirect also output of this program you type 
words < article.txt > output.txt
· To process input one line at a time, use the getline function. 

string line;
while (getline(cin, line))
{  process line
}

· As above, the getline function returns cin, so you can test that cin hasn't yet failed.
· lines.cpp
· To process input character by character, use the loop 

char ch;
while (cin.get(ch))
{  process ch
}

· chars.cpp


Simulations

· In a simulation we generate random events and evaluate their outcomes.
· The C++ library has a random number generator, which produces numbers that appear to be random.
· Calling rand() yields a random number between 0 and RAND_MAX (usually 32767, but implementation dependent).
· These numbers actual come from a a very long sequence of numbers computed from fairly simple formulas; they just behave like random numbers. 
· For that reason they are often called pseudorandom numbers.
· The following program produces the exact same output every time the program is run (because the numbers are generated with formulas). 

int main()
{  int i;
   for (i = 1; i <= 10; i++)
   {  int r = rand();
      cout << r << "\n";
   }
   return 0;
}

· random.cpp
· When you specify a new seed for the random number sequence, the generator generates a new (different) sequence. 

· The seed is set with the srand function. 

· By setting the seed based on the time, the random numbers will be different every time you run the program. 

Time now;
int seed = now.seconds_from(Time(0,0,0));
srand(seed);

· In actual applications you want to generate random numbers in different ranges, say between a and b.
· For example, to simulate a die roll, you need numbers between a = 1 and b = 6.
· First compute rand() % (b - a + 1) to obtain a random value between 0 and b - a.

· Add that to a to yield a random value between a and b. 

int rand_int(int a, int b)
{  return a + rand() % (b - a + 1);
}

Simulations (dice.cpp)

#include <iostream>

#include <string>

#include <cstdlib>

#include <ctime>

using namespace std;

/**

   Sets the seed of the random number generator.

*/

void rand_seed()

{  int seed = static_cast<int>(time(0));

   srand(seed);

}

/** 

   Compute a random integer in a range

   @param a the bottom of the range

   @param b the top of the range

   @return a random integer x, a <= x and x <= b

*/

int rand_int(int a, int b)

{  return a + rand() % (b - a + 1);

}

int main()

{  rand_seed();

   int i;

   for (i = 1; i <= 10; i++)

   {  int d1 = rand_int(1, 6);

      int d2 = rand_int(1, 6);

      cout << d1 << " " << d2 << "\n";

   }

   cout << "\n";

   return 0;

}
· To generate a random floating-point number, note that the quantity rand() * 1.0 / RAND_MAX is a random floating-point value between 0 and 1.
· The 1.0 ensures that the divisor is a floating-point number. 

double rand_double(double a, double b)
{  return a + (b - a) * rand() * (1.0 / RAND_MAX);
}



Simulations (Buffon Needle Experiment)

· Devised by Comte George-Louis Leclerc de Buffon (1707-1788), a French naturalist.
· A needle of length 1 inch is dropped onto paper that is ruled with parallel lines 2 inches apart.
· If the needle drops onto a line, we count it as a hit.
· The quotient tries / hits approximates pi.
· Our program randomly generates the lower point of the needle and an angle.
· The upper point of the needle is given by yhigh = ylow + sin(alpha).
· If yhigh >= 2, we count the needle as a hit.
[image: image21.png]Jhigh = m e
) A

s




Simulations (buffon.cpp)

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;

/**
   Sets the seed of the random number generator.
*/
void rand_seed()
{  int seed = static_cast<int>(time(0));
   srand(seed);
}

/** 
   Compute a random floating point number in a range
   @param a the bottom of the range
   @param b the top of the range
   @return a random floating point number x, 
   a <= x and x <= b
*/
double rand_double(double a, double b)
{  return a + (b - a) * rand() * (1.0 / RAND_MAX);
}

/** 
   Converts an angle from degree to radian.
   @param alpha the angle in degrees
   @return the angle in radian
*/
double deg2rad(double alpha)
{  const double PI = 3.141592653589793;
   return alpha * PI / 180;
}

int main()
{  const int NTRIES = 10000;
   int hits = 0;
   rand_seed();
   for (int i = 1; i <= NTRIES; i++)
   {  double ylow = rand_double(0, 2);
      double angle = rand_double(0, 180);
      double yhigh = ylow + sin(deg2rad(angle));
      if (yhigh >= 2) hits++;                      
   }
   cout << "Tries / Hits = " 
        << NTRIES * (1.0 / hits) << "\n";
   return 0;
}
· The point of this program is not to compute pi (after all, we needed the value of pi in the deg2rad function). Rather, the point is to show how to a physical experiment can be simulated on the computer. 


Lecture 11: Testing and Debugging

Lecture Goals

· To learn how to design test harnesses for testing components of your programs in isolation
· To understand the principles of test case selection and evaluation 
· To be able to use assertions to document program assumptions
· To become familiar with the debugger
Unit Tests

· In a unit test, a function or procedure is compiled outside the program in which it will be used, together with a test harness that feeds arguments to it.
· Once you have confidence that the function is working correctly, you can plug it into your program.
· Test data can be
· entered manually (sqrtest1.cpp),
· in a loop (sqrtest2.cpp), or
· using random number generation (sqrtest3.cpp).
Unit Tests (sqrtest1.cpp)

#include <iostream>
#include <cmath>
using namespace std;

/**
   Tests whether two floating-point numbers are 
   approximately equal.
   @param x a floating-point number
   @param y another floating-point number
   @return true if x and y are approximately equal
*/
bool approx_equal(double x, double y)
{  const double EPSILON = 1E-14;
   if (x == 0) return fabs(y) <= EPSILON;
   if (y == 0) return fabs(x) <= EPSILON;
   return fabs(x - y) / max(fabs(x), fabs(y)) <= EPSILON;
}

/* Function to be tested */
/**
   Computes the square root using Heron's formula
   @param a an integer >= 0
   @return the square root of a
*/
double squareroot(double a)
{  if (a == 0) return 0;

   double xnew = a;
   double xold;
   do
   {  xold = xnew;
      xnew = (xold + a / xold) / 2;
   }
   while (!approx_equal(xnew, xold));
   return xnew;
}

/* Test harness */
int main()
{  double x;
   while (cin >> x)
   {  double y = squareroot(x);
      cout << "squareroot of " << x << " = " << y << "\n";
   }
   return 0;
} 

· You need to enter inputs and to force an end of input when you are done, by typing a key such as Ctrl+Z or Ctrl+D. 
· For each test case, the harness code calls the squareroot function and prints the result. 
· You can then manually check the computations. 
Unit Tests (sqrtest2.cpp)

#include <iostream>
#include <cmath>
using namespace std;

/**
   Tests whether two floating-point numbers are 
   approximately equal.
   @param x a floating-point number
   @param y another floating-point number
   @return true if x and y are approximately equal
*/
bool approx_equal(double x, double y)
{  const double EPSILON = 1E-14;
   if (x == 0) return fabs(y) <= EPSILON;
   if (y == 0) return fabs(x) <= EPSILON;
   return fabs(x - y) / max(fabs(x), fabs(y)) <= EPSILON;
}

/* Function to be tested */
/**
   Computes the square root using Heron's formula
   @param a an integer >= 0
   @return the square root of a
*/
double squareroot(double a)
{  if (a == 0) return 0;

   double xnew = a;
   double xold;
   do
   {  xold = xnew;
      xnew = (xold + a / xold) / 2;
   }
   while (!approx_equal(xnew, xold));
   return xnew;
}

/* Test harness */
int main()
{  double x;
   for (x = 0; x <= 10; x = x + 0.5)
   {  double y = squareroot(x);
      cout << "squareroot of " << x << " = " << y << "\n";
   }
   return 0;
} 

· We generate test cases automatically and check the results manually.
Unit Tests (sqrtest3.cpp)

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;

/**
   Sets the seed of the random number generator.
*/
void rand_seed()
{  int seed = static_cast<int>(time(0));
   srand(seed);
}

/** 
   Compute a random floating point number in a range
   @param a the bottom of the range
   @param b the top of the range
   @return a random floating point number x, 
   a <= x and x <= b
*/
double rand_double(double a, double b)
{  return a + (b - a) * rand() * (1.0 / RAND_MAX);
}

/**
   Tests whether two floating-point numbers are 
   approximately equal.
   @param x a floating-point number
   @param y another floating-point number
   @return true if x and y are approximately equal
*/
bool approx_equal(double x, double y)
{  const double EPSILON = 1E-14;
   if (x == 0) return fabs(y) <= EPSILON;
   if (y == 0) return fabs(x) <= EPSILON;
   return fabs(x - y) / max(fabs(x), fabs(y)) <= EPSILON;
}

/* Function to be tested */
/**
   Computes the square root using Heron's formula
   @param a an integer >= 0
   @return the square root of a
*/
double squareroot(double a)
{  if (a == 0) return 0;

   double xnew = a;
   double xold;
   do
   {  xold = xnew;
      xnew = (xold + a / xold) / 2;
   }
   while (!approx_equal(xnew, xold));
   return xnew;
}

/* Test harness */
int main()
{  rand_seed();
   int i;
   for (i = 1; i <= 100; i++)
   {  double x = rand_double(0, 1E6);
      double y = squareroot(x);
      cout << "squareroot of " << x << " = " << y << "\n";
   }
   return 0;
} 

· Random generation of test cases is useful for testing.


Selecting Test Cases

· Test cases:
· Positive tests consist of legitimate inputs that you expect the program handles correctly.
For example: 4, 2, 1.5, 1e10, 1.111111111, ... 
· Boundary cases are also legitimate inputs that you expect the program to handle in a trivial way.
For example: 0 
· Other boundary cases are also legitimate inputs.
For example: 1e200, 1e-200, 2.222222222222, ... 
· Negative cases are inputs that you expect the program to fail on.
For example: -1 
· Keeping test data in a file is smart because you can use it to review every version of the program.
>sqrtest1 < test.in > test.out 
· When you find a bug, you should record the data that caused the bug, and retest your program with that data after you have tried to fix the bug.
· The phenomenon of fixing a bug, only to have it reappear after further program modifications is called cycling. The process of testing against a set of past failures is called regression testing.
· Testing the functionality of the program without consideration of its internal structure is called black-box testing.
· Testing strategies that look inside a program are called white-box testing.


Test Case Evaluations

· Once you have determined what inputs are needed to test the program, you need to decide if the outputs are correct.
· Sometimes you can verify output by calculating the correct values by hand.
· Sometimes a computation does a lot of work, and it is not practical to do the computation manually.
· We could write a test program that verifies that the output values fulfill certain properties.
· Here we test the squareroot() function by comparing the square of the returned number with the original input.
Test Case Evaluations (sqrtest4.cpp)

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;

/**
   Sets the seed of the random number generator.
*/
void rand_seed()
{  int seed = static_cast<int>(time(0));
   srand(seed);
}

/** 
   Compute a random floating point number in a range
   @param a the bottom of the range
   @param b the top of the range
   @return a random floating point number x, 
   a <= x and x <= b
*/
double rand_double(double a, double b)
{  return a + (b - a) * rand() * (1.0 / RAND_MAX);
}

/**
   Tests whether two floating-point numbers are 
   approximately equal.
   @param x a floating-point number
   @param y another floating-point number
   @return true if x and y are approximately equal
*/
bool approx_equal(double x, double y)
{  const double EPSILON = 1E-14;
   if (x == 0) return fabs(y) <= EPSILON;
   if (y == 0) return fabs(x) <= EPSILON;
   return fabs(x - y) / max(fabs(x), fabs(y)) <= EPSILON;
}

/* Function to be tested */
/**
   Computes the square root using Heron's formula
   @param a an integer >= 0
   @return the square root of a
*/
double squareroot(double a)
{  if (a == 0) return 0;

   double xnew = a;
   double xold;
   do
   {  xold = xnew;
      xnew = (xold + a / xold) / 2;
   }
   while (!approx_equal(xnew, xold));
   return xnew;
}

/* Test harness */
int main()
{  int i;
   for (i = 1; i <= 100; i++)
   {  double x = rand_double(0, 1E6);
      double y = squareroot(x);
      if (not_equal(y * y, x)) 
         cout << "Test failed. ";
      else 
         cout << "Test passed. ";
      cout << "squareroot of " << x << " = " << y << "\n";
   }
   return 0;
} 

· Another method is to use a slower but reliable procedure (called an oracle) to verify the results. In this case, we will use pow() as an oracle. (See sqrtest5.cpp)
Test Case Evaluations (sqrtest5.cpp)

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;

/**
   Sets the seed of the random number generator.
*/
void rand_seed()
{  int seed = static_cast<int>(time(0));
   srand(seed);
}
 
/** 
   Compute a random floating point number in a range
   @param a the bottom of the range
   @param b the top of the range
   @return a random floating point number x, 
   a <= x and x <= b
*/
double rand_double(double a, double b)
{  return a + (b - a) * rand() * (1.0 / RAND_MAX);
}
 
/**
   Tests whether two floating-point numbers are 
   approximately equal.
   @param x a floating-point number
   @param y another floating-point number
   @return true if x and y are approximately equal
*/
bool approx_equal(double x, double y)
{  const double EPSILON = 1E-14;
   if (x == 0) return fabs(y) <= EPSILON;
   if (y == 0) return fabs(x) <= EPSILON;
   return fabs(x - y) / max(fabs(x), fabs(y)) <= EPSILON;
}

/* Function to be tested */
/**
    Computes the square root using Heron's formula
    @param a an integer >= 0
    @return the square root of a
 */
double squareroot(double a)
{  if (a == 0) return 0;
 
    double xnew = a;
    double xold;
    do
    {  xold = xnew;
       xnew = (xold + a / xold) / 2;
    }
    while (!approx_equal(xnew, xold));
    return xnew;
}
 
/* Test harness */
int main()
{  rand_seed();
   int i;
   for (i = 1; i <= 100; i++)
   {  double x = rand_double(0, 1E6);
      double y = squareroot(x);
      if (!approx_equal(y, pow(x, 0.5))) 
         cout << "Test failed. ";
      else 
         cout << "Test passed. ";
      cout << "squareroot of " << x << " = " << y << "\n";
   }
   return 0;
} 



Assertions (reminder)

· Functions often contain implicit assumptions (denominators should be nonzero, salaries should not be negative).
· Such illegal values can creep into a program due to an input or processing error - with distressing regularity!
· Assertions provide a valuable sanity check. 

void raise_salary(Employee& e, double by)
{  assert(e.get_salary() >= 0 );
   assert(by >= -100);
   double new_salary = e.get_salary() * (1 + by / 100);
   e.set_salary(new_salary);
}

· If an assertion is not satisfied, the program terminates with a useful error message showing the line number and the code of the failed assertion: 

assertion failed in file finclac.cpp line 61: by >= -100

· That is a powerful signal that something went wrong elsewhere and that the program needs further testing.
· [futval0.cpp]


Program Traces

· To get a printout of the program flow, you can insert trace messages into the beginning and end of every procedure.
· It is also useful to print the input parameters when a procedure is entered and to print return values when a function is exited. 

string int_name(int n)
{  cout << "Entering digit_name. n = " << n << "\n";
   ...
   cout << "Exiting digit name. Return value = "
        << s << "\n";
   return s;
}

· trace.cpp 

· To get a proper trace, you must locate each function exit point. 
· Sample output for n = 12305. 

Inside int_name. Thousands.
Entering int_name. n = 12
Inside int_name. Teens.
Entering teen_name. n = 12
Exiting teen_name. Return value = twelve
Exiting digit_name. Return value = twelve
Inside int_name. Hundreds.
Entering digit_name. n = 3
Exiting digit_name. Return value = three
Inside int_name. Ones.
Entering digit_name. n = 5
Exiting digit_name. Return value = five
Exiting int_name. Return value = twelve thousand three hundred five

Program Traces (Problems with Trace Messages)

· Program traces can be time-consuming to find out which trace message to insert.
· If you insert too many messages, you produce a flurry of output that is hard to analyze.
· If you insert to few, you may not have enough information to spot the cause of the error.
· When you are done with the program, you need to remove all the trace messages.
· When you find a new error, you need to stick the print statement back in.
· Many profession programmers use a debugger, not trace messages, to locate errors in their code.


The Debugger

· Modern development environments contain special programs, called debuggers, that help you locate bugs by letting you follow the execution of a program.
· You can stop and restart your program and see the contents of variables whenever your program is temporarily stopped.
· Using a debugger is not cost free - it takes time to set up and carry out an effective debugging session.
· Larger programs are harder to debug without using a debugger, so learn how to use one is time well spent.
· Debuggers vary wildly from one system to another.
· If you use an integrated development environment, which contains an editor, compiler, and a debugger, finding and starting the debugger is usually very easy.
· On a UNIX system, you must manually build a debug version of your program and invoke the debugger.
· You can go a long way with just three commands: 

· Run until this line.
· Step to next line.
· Inspect variable.
· The exact names for these commands will vary from debugger to debugger, but all debuggers support them.
· [prime.cpp]


Lecture 12: Vectors and Arrays I

Lecture Goals

· To become familiar with using vectors to collect objects
· To be able to access vector elements and resize vectors
· To be able to pass vectors to functions
· To learn about common vector algorithms
Using Vectors to Collect Data Items

· Example: Suppose you write a program that read in a list of salary figures and prints out the list, marking the highest value, like this: 

32000
54000
67500
29000
35000
80000
highest value => 115000
44500
100000
65000

· All the values need to be read to find the highest one.
· If you know there are 10 inputs, you could use 10 variables salary1, salary2, ... , salary10. But you would have to write a lot of code 10 times to handle each variable.
· This technique becomes prohibitive as the list gets larger (100 salaries).
· A vector is a collection (a sequence) of data items of the same type. 

vector<double> salaries(10);

· This vector holds 10 successive values of double type. 

[image: image22.png]salaries =

r 10





	Syntax 9.1: Vector Variable Definition
vector<type_name> variable_name;
vector<type_name> variable_name(initial_size);
Example: 
vector<int> scores;
vector<Employee> staff(20);
Purpose: 
Define a new variable of vector type, and optionally supply an initial size.



· You must specify which slot (memory location) you want to use with the [] (subscript) operator. 

salaries[4] = 35000;

· The number inside the brackets is called an index.
· Because salaries is a vector of double values, a slot such as salaries[4] can be used just like any variable of type double. 

cout << salaries[4] << "\n";

· In C++, the slots (elements) of vectors are numbered starting at 0. 

[image: image23.png]salaries =

35000

W 0NV AE WNRFEO






Vector Subscripts

	Syntax 9.2: Vector Subscripts
vector_expression[integer_expression]
Example: 
salaries[i + 1]
Purpose: 
Access and element in a vector.



· Trying to access a slot that does not exist in the vector is an error. 

vector<double> salaries(10);
cout << salaries[10]; 
/* ERROR ! Legal subscripts are 0 until 9 */
· The C++ standard implementation of vector generates no error message.
· If you make an index error, you silently read or overwrite another memory location.
· When a vector is defined without a size parameter, it is empty and can hold no elements. 

vector<double> salaries; /* no size given */
salaries[0] = 35000; /* ERROR ! */
· You can find the size vector by calling the size()member function. 

for(i = 0; i < v.size(); i++)
   do something with v[i];

· Using size is actually better than using a constant (so called magic number).
· The function push_back allows you to start out with an empty vector and grow the vector whenever another element is added. 

vector<double> salaries;
. . . 
double s;
cin >> s;
. . .
salaries.push_back(s);

· The push_back member function resizes the vector by adding one element to its end.
· If you already know how many elements you need in a vector, you should specify that size when you define it.
· Another member function, pop_back, removes the last element of a vector, shrinking its size by one. 

salaries.pop_back(); /* Now salaries has size 9 */

· The C++ standard (STL) defines many more useful functions for vectors, but we will use only size, push_back and pop_back.
Vector Subscripts (salvect.cpp)

 #include <iostream>
 #include <vector> 
 using namespace std;
 
 int main()
 {  vector<double> salaries;
    bool more = true;
    while (more)
    {  double s;
       cout << "Please enter a salary, 0 to quit: ";
       cin >> s;
       if (s == 0) more = false;
       else salaries.push_back(s);
    } 
    double highest = salaries[0];
    int i;
    for (i = 1; i < salaries.size(); i++)
       if (salaries[i] > highest)
          highest = salaries[i];
 
    for (i = 0; i < salaries.size(); i++)
    {  if (salaries[i] == highest) 
          cout << "highest value => ";
       cout << salaries[i] << "\n";
    } 
    return 0;
 } 



Vector Parameters and Return Values

· Functions and procedures often have vector parameters. 
· Example: This function computes the average of a vector of floating-point numbers.  

double average(vector<double> v)
{  if (v.size() == 0) return 0;
   double sum = 0;
   for (int i = 0; i < v.size(); i++) sum = sum + v[i];
   return sum / v.size();
}

· average.cpp 

· A vector can be passed by value or by reference.
· Pass by reference is used for modifying individual elements of the vector.
· Example: The function raises all values in the vector by the given percentage. 

void raise_by_percent(vector<double>& v, double p)
{  for (int i = 0; i < v.size(); i++)
           v[i] = v[i] * (1 + p / 100);
}

· raisesal.cpp 

· A function can return a vector.
· Example: Here is a function that collects all values that fall within a certain range. 

vector<double> between(vector<double> v, double low, double high)
{  vector<double> result;
   for (int i = 0; i < v.size(); i++)
      if (low <= v[i] && v[i] <= high) result.push_back(v[i]);
   return result;
}

· between.cpp
· Example: Here is a function that collects the positions of all matching values in a vector of integers. 

vector<int> find_all_between(vector<double> v, double low, double high)
{  vector<int> pos;
   for (int i = 0; i < v.size(); i++)
      if (low <= v[i] && v[i] <= high) pos.push_back(i);
   return pos;
}

Vector Parameters and Return Values (matches.cpp)

 #include <iostream>
 #include <vector> 
 using namespace std;
 /**
    Returns the positions of all values within a range
    @param v a vector of floating-point numbers
    @param low the low end of the range
    @param high the high end of the range
    @return a vector of positions of values in the given range
 */
 vector<int> find_all_between(vector<double> v, 
                        double low, double high)
 {  vector<int> pos;
    for (int i = 0; i < v.size(); i++)
      if (low <= v[i] && v[i] <= high)
          pos.push_back(i);
    
    return pos;
 }
 
 int main()
 {  vector<double> salaries(5);
    salaries[0] = 35000.0;
    salaries[1] = 63000.0;
    salaries[2] = 48000.0;
    salaries[3] = 78000.0;
    salaries[4] = 51500.0;
 
    vector<int> matches
       = find_all_between(salaries, 45000.0, 65000.0);
 
    for (int j = 0; j < matches.size(); j++)
       cout << salaries[matches[j]] << "\n";
    return 0;
 } 



Removing and Inserting Elements

· How do you remove an element from a vector? 
· If the order is not important, overwrite the element to be removed with the last element of the vector, then shrink the size of the vector. 

void erase(vector<string>& v, int pos)
{  int last_pos = v.size() - 1;
   v[pos] = v[last_pos];
   v.pop_back();
}

[image: image24.png]alemantto
b
ramovad





· erase1.cpp
· If the order matters, you must move all elements down by one slot (to the index 0), then shrink the size of the vector. 

void erase(vector<string>& v, int pos)
{  for (int i = pos; i < v.size() - 1; i++) v[i] = v[i + 1];
   v.pop_back();
}

[image: image25.png]



Removing and Inserting Elements (erase2.cpp)

 #include <iostream>
 #include <string>
 #include <vector> 
 using namespace std; 
 /**
    Removes an element from an ordered vector.
    @param v a vector
    @param pos the position of the element to erase
 */
 void erase(vector<string>& v, int pos)
 {  for (int i = pos; i < v.size() - 1; i++)
       v[i] = v[i + 1];
    v.pop_back();
 } 
 /** 
    Prints all elements in a vector.
    @param v the vector to print
 */
 void print(vector<string> v)
 {  for (int i = 0; i < v.size(); i++)
       cout << "[" << i << "] " << v[i] << "\n";
 }
 
 int main()
 {  vector<string> staff(5);
    staff[0] = "Cracker, Carl";
    staff[1] = "Hacker, Harry";
    staff[2] = "Lam, Larry";
    staff[3] = "Reindeer, Rudolf";
    staff[4] = "Sandman, Susan";
    print(staff);
 
    int pos;
    cout << "Remove which element? ";
    cin >> pos;
 
    erase(staff, pos);
    print(staff);
    return 0;
 } 

· To insert an element in the middle of a vector, you must add a new element at the end of the vector and move all elements above (to the end of the vector) the insertion location up by one slot. 

void insert(vector<string>& v, int pos, string s)
{  int last = v.size() - 1;
   v.push_back(v[last]);
   for (int i = last; i > pos; i--) v[i] = v[i - 1];
   v[pos] = s;
}

· Note that when you insert an element you start at the end of the vector, move that element up, then go to the one before that.
[image: image26.png]eeeeeeee




Removing and Inserting Elements (insert.cpp)

 #include <iostream>
 #include <string>
 #include <vector> 
 using namespace std;
 /**
    Inserts an element into a vector.
    @param v a vector
    @param pos the position before which to insert the element
    @param s the element to insert
 */
 void insert(vector<string>& v, int pos, string s)
 {  int last = v.size() - 1; 
    v.push_back(v[last]);
    for (int i = last; i > pos; i--)
       v[i] = v[i - 1];
    v[pos] = s;
 } 
 /** 
    Prints all elements in a vector.
    @param v the vector to print
 */
 void print(vector<string> v)
 {  for (int i = 0; i < v.size(); i++)
       cout << "[" << i << "] " << v[i] << "\n";
 }
 
 int main()
 {  vector<string> staff(5);
    staff[0] = "Cracker, Carl";
    staff[1] = "Hacker, Harry";
    staff[2] = "Lam, Larry";
    staff[3] = "Reindeer, Rudolf";
    staff[4] = "Sandman, Susan";
    print(staff);
 
    int pos;
    cout << "Insert before which element? ";
    cin >> pos;
 
    insert(staff, pos, "New, Nina");
    print(staff);
    return 0;
 } 



Parallel Vectors

· Example: Suppose you want to process a series of product data, and the display the product information, making the best value (with the best price/score ratio). 

               ACMA P600 Price: 995 Score75
               ALaris Nx686 Price 798 Score 57
               AMAX Powerstation 600 Price: 999 Score 75
               AMS Infogold P600 Price: 795 Score: 69
               AST PRemmia Price: 2080 Score: 80
               Austin 600 Price: 1499 Score: 95
best value =>  Blackship NX-600 Price 598 Score: 60
               Kompac 690 Price: 695 Score: 60

· One possibility is to create three vectors (names, price, scores) of the same length.
· These vectors are called parallel vectors because they must be processed together.
· Each slice - names[i], prices[i], scores[i] - contains data that needs to be processed together.
[image: image27.png]A slice

names pr'ices scores




Parallel Vectors (bestval1.cpp)

 #include <iostream>
 #include <string>
 #include <vector> 
 using namespace std;
 
 int main()
 {  vector<string> names;
    vector<double> prices;
    vector<int> scores;
 
    double best_price = 1;
    int best_score = 0;
    int best_index = -1;
 
    bool more = true;
    while (more)
    {  string next_name;
       cout << "Please enter the model name: ";
       getline(cin, next_name);
       names.push_back(next_name);
       double next_price;
       cout << "Please enter the price: ";
       cin >> next_price;
       prices.push_back(next_price);
       int next_score;
       cout << "Please enter the score: ";
       cin >> next_score;
       scores.push_back(next_score);
       string remainder; /* read remainder of line */
       getline(cin, remainder); 
 
       if (next_score / next_price > best_score / best_price)
       {  best_index = names.size() - 1;
          best_score = next_score;
          best_price = next_price;
       }      
       cout << "More data? (y/n) ";
       string answer;
       getline(cin, answer);
       if (answer != "y") more = false;
    } 
    for (int i = 0; i < names.size(); i++)
    {  if (i == best_index) cout << "best value => ";
       cout << names[i]
            << " Price: " << prices[i]
            << " Score: " << scores[i] << "\n";
    } 
    return 0;
 } 

· Parallel vectors become a headache in larger programs. 

· Each vector must be the same length.
· Each slice is filled with values that belong together.
· Any function that operates on a slice must get several vectors as parameters.
· To remove parallel vectors, look at the slice and find the concept it represents. Make the concept into a class.
· Eliminate parallel vectors and replace them with a single vector of objects.
[image: image28.png]p—
|
il

Parallel vectors

A vector of objects




Parallel Vectors (bestval2.cpp)

 #include <iostream>
 #include <string>
 #include <vector> 
 using namespace std;
 
 class Product {
 public:
    Product();
    void read();
    bool is_better_than(Product b) const;
    void print() const;
 private:
    string name;
    double price;
    int score;
 };
 
 Product::Product()
 {  price = 0;
    score = 0;
 }
 
 void Product::read()
 {  cout << "Please enter the model name: ";
    getline(cin, name);
    cout << "Please enter the price: ";
    cin >> price;
    cout << "Please enter the score: ";
    cin >> score;
    string remainder; /* read remainder of line */
    getline(cin, remainder);
 }
 
 bool Product::is_better_than(Product b) const
 {  if (price == 0) return false;
    if (b.price == 0) return true;
    return score / price > b.score / b.price;
 }
 
 void Product::print() const
 {  cout << name
         << " Price: " << price
         << " Score: " << score << "\n";
 }
 
 int main()
 {  vector<Product> products;
    Product best_product;
    int best_index = -1;
    bool more = true;
    while (more)
    {  Product next_product;
       next_product.read();
       products.push_back(next_product);
 
       if (next_product.is_better_than(best_product))
       {  best_index = products.size() - 1;
          best_product = next_product;
       }     
       cout << "More data? (y/n) ";
       string answer;
       getline(cin, answer);
       if (answer != "y") more = false;
    }
     for (int i = 0; i < products.size(); i++)
    {  if (i == best_index) cout << "best value => ";
       products[i].print();
    } 
    return 0;
 } 



PAGE  
106

