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Abstract

Hausdorff distance (HD) and its modifications provides
one of the best approaches for matching of binary im-
ages. This paper proposes a formalism generalizing al-
most all of these HD based methods. Numerical experi-
ments for searching words in binary text images are car-
ried out with old Bulgarian typewritten text, printed Bul-
garian Chrestomathy from 1884 and Slavonic manuscript
from 1574.

1. Introduction

Optical character recognition (OCR) is widely used ap-
proach for converting text images into text file. This step
allows conducting text retrieval from scanned document im-
ages. OCR algorithm recognizes every character mapping it
to a number, which is called code. Unfortunately often hu-
man efforts are needed to correct OCR errors which is quite
tedious job. This is a consequence of bad original source or
bad scanning process; old letters, outside the coding tables;
old grammar; obsolete words, phrases and idioms; absence
of dictionaries; multi-lingual documents.

One of the main reasons for converting binary text im-
ages to text file is search. Searching in a text file is an effi-
cient well-known task.

For word searching we suggest a different approach:
words are searched in text images, obtained directly by
scanning process (see [1], [2]) instead of applying OCR and
searching in a text file. Organizing retrieval of words, simi-
lar to a given pattern word, by searching in the set of binary
text images is an idea presented also in [4] and [10].

The main goals of this paper are:
• to propose a new method for estimating the similar-

ity between two binary images in order to generalize and to
unify the existing image matching methods based on Haus-
dorff distance;
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• to check numerically the efficiency of generalized HD
method when it is applied for word matching in typewritten,
printed and handwritten historical documents.

2. Hausdorff distances for set similarities

The Hausdorff distance (HD) between two closed and
bounded subsets A and B of a given metric space M is
defined by

H(A,B) = max{h(A,B), h(B,A)}, (1)

where h(A,B) is so-called directed distance from A to B.
For classical Hausdorff distance

h(A,B) = max
a∈A

d(a,B), d(a,B) = min
b∈B

ρ(a, b). (2)

d(a,B) is the distance from a point a to the set B, and
ρ(a, b) is a point distance in the metric space M .

HD looks very attractive for measuring the similarity be-
tween images as plane sets. Unfortunately, the HD (1) does
not meet requirements of robustness. Many attempts have
been made to avoid this “weakness” of HD modifying it in
a way to overcome the representation of HD by just two
points which could be parasitic (not part of a real image).
The main idea is that more points have to be included and
in such way decreasing the influence of eventual presence
of noise upon final evaluation of H(A,B).

Let A and B be finite sets in the plane which consist of
NA and NB points respectively and let ρ be the Euclidean
distance in R2.

D. P. Huttenlocher et al. [5] proposed Partial Haus-
dorff Distance (PHD) for comparing images containing a
lot of degradation or occlusions. LetKth

a∈A denote theK-th
ranked value in the set of distances {d(a,B) : a ∈ A} =
{d(ai, B), i = 1, . . . , NA}, i.e. for each point of A, the dis-
tance to the closest point of B is computed, and then, the
points of A are ranked by their respective distance values:

d(a1, B) ≥ · · · ≥ d(aK , B) ≥ · · · ≥ d(aNA
, B). (3)
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This definition of Kth
a∈A differs from the original one in [5],

where the rating order in (3) is in the opposite direction.
The directed distance for PHD is

hK(A,B) = Kth
a∈Ad(a,B) = d(aK , B). (4)

The idea of J. Paumard [8] is that we do not take into ac-
count the L closest neighbours of a ∈ A in B. So we define
the distance from a point a ∈ A to the set B as follows

dL(a,B) = Lthb∈Bρ(a, b),

where Lthb∈Bρ(a, b) = ρ(a, bL) denotes the L-th ranked
value in the set of distances {ρ(a, b) : b ∈ B} =
{ρ(a, bi), i = 1, . . . , NB}, i.e.

ρ(a, b1) ≤ · · · ≤ ρ(a, bL) ≤ · · · ≤ ρ(a, bNB
).

Now the directed Censored Hausdorff Distance (CHD) is
defined by

hK,L(A,B) = Kth
a∈AdL(a,B) = Kth

a∈AL
th
b∈Bρ(a, b). (5)

For comparing two images obtained by adding randomly
black and white dots to one of them the recommended val-
ues in [8] for the parameters are K = 0.1NA and L =
0.01NB .

M.-P. Dubuisson and A. Jain [3] examined 24 distance
measures of Hausdorff type to determine to what extend two
finite sets A and B on the plane differ. Based on numerical
behavior of these distances on synthetic images containing
various levels of noise they introduced Modified Hausdorff
Distance (MHD) with directed distance

hMHD(A,B) =
1
NA

∑
a∈A

d(a,B) =
1
NA

∑
a∈A

min
b∈B

ρ(a, b).

(6)
In 1999 D.-G. Sim et al. [9] described two modifications

of MHD for elimination of outliers (usually the points of
outer noise). Based on robust statistics M-estimation and
least trimmed square, they introduced M-HD and LTS-HD.
The directed M-HD is defined by

hM(A,B) =
1
NA

∑
a∈A

fτ (d(a,B)), (7)

where the function fτ : R+ → R+ is increasing and has an
unique minimum value at zero. They introduce one simple
function with these properties

fτ (x) = min{x, τ}, (8)

for a given τ > 0. The recommended interval of τ is [3, 5]
for their purposes.

The directed distance of LTS-HD is defined by

hLTS(A,B) =
1

NA −K + 1

NA∑
i=K

d(ai, B), (9)

where 1 ≤ K ≤ NA and a1, a2, . . . , aNA
are the points of

A for which (3) is valid. The authors suggest K/NA = 0.2
for comparing noisy binary images contaminated by Gaus-
sian noise.

3. A new approach to HD similarity measures

Let us suppose there is a linear order of the points of the
set A = {a1, a2, . . . , aNA

}. For every ak ∈ A we calculate
the distances from ak to all points in B, as follows:

dk1 = min
b∈B

ρ(ak, b) = ρ(ak, bk1),

dk2 = min
b∈B\{bk1}

ρ(ak, b) = ρ(ak, bk2),

. . . ,
dkl = min

b∈B\{bk1,...,bkl−1}
ρ(ak, b) = ρ(ak, bkl),

. . .

(10)

In such a way we obtain a nondecreasing sequence of non-
negative numbers

dk1 ≤ dk2 ≤ · · · ≤ dkl ≤ · · · ≤ dkNB
.

Let the matrix D be defined by

D =


d11 d12 . . . d1l . . . d1NB

· · · · · · · · · · · · · · · · · ·
dk1 dk2 . . . dkl . . . dkNB

· · · · · · · · · · · · · · · · · ·
dNA1 dNA2 . . . dNAl . . . dNANB

 .

For a given 1 ≤ l ≤ NB , we define a new matrix Dl:

Dl =
(
d
(l)
ij

)
, i = 1, . . . , NA, j = 1, . . . , NB

interchanging the rows of the matrix D so that the elements
of l-th column are sorted, i.e. satisfying the following in-
equalities:

dl1l ≥ dl2l ≥ · · · ≥ dlkl ≥ · · · ≥ dlNAl.

Let 1 ≤ k ≤ NA and 1 ≤ l ≤ NB be integer numbers.
We define two Generalized Hausdorff Distances (GHD) us-
ing the following directed distances:

h
(p)
k,l (A,B) = dlkl (11)

and

h
(s)
k,l (A,B) =

1
NA − k + 1

NA∑
i=k

dlil. (12)

We denote (11) by p-GHD and (12) by s-GHD. These defi-
nitions generalize all Hausdorff based distances mentioned
above, which can be represented by their directed distances
as follows:
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HD (2): h(A,B) = h
(p)
1,1(A,B) = d1

11;

PHD (4): hK(A,B) = h
(p)
K,1(A,B) = d1

K1;

CHD (5): hK,L(A,B) = h
(p)
K,L(A,B) = dLKL;

MHD (6): hMHD(A,B) = h
(s)
1,1(A,B) =

1
NA

NA∑
i=1

d1
i1;

LTS-HD (9): hLTS(A,B) = h
(s)
K,1(A,B).

We parameterize GHD replacing k and l in (11) and (12)
by parameters α and β:

α =
k − 1
NA

, β =
l − 1
NB

. (13)

Since 1 ≤ k ≤ NA and 1 ≤ l ≤ NB we have α, β ∈ [0, 1).
In practice of image comparison, we have upper bounds

for the distances between the points of any two images.
Thus we define bounded modifications of point distances:

ρ(τ)(a, b) = min{ρ(a, b), τ}, (14)

where τ is a positive number and ρ(a, b) can be any point
distance. The three most frequently used ones are Eu-
clidean – ρ2(a, b) =

√
(a1 − b1)2 + (a2 − b2)2, Manhat-

tan – ρ1(a, b) = |a1 − b1| + |a2 − b2| and Chebyshev –
ρ∞(a, b) = max{|a1− b1|, |a2− b2|}, where a = (a1, a2),
b = (b1, b2). Replacing ρ with ρ(τ) in formulas (10) we in-
troduce a new parameter τ for GHD. So for defining a con-
crete p- or s-GHD, we have to choose values for the parame-
ters α, β, ρ and τ . Note that M-HD (7) with the function (8)
coincides with MHD (6) applying ρ(τ) for point distance.

3.1. Measuring searching effectiveness

The effectiveness of searching methods is usually given
by standard estimations of recall and precision (see M.
Junker et al. [6]). Let us look for a word W0 (pattern word)
in a collection of binary text images in which W0 occurs
N times. Comparing W0 with other words in the text, a
sequence of words is generated:

{Wi}i=0,1,... (15)

which is ordered according to a similarity measure H , i.e.
H(Wi,W0) ≤ H(Wj ,W0) for every i < j.

For a positive integer n, let m(n) ≤ n be the number of
words among the first nwords of (15) that coincide withW0

as words. Then recall r(n) and precision p(n) are defined
by

r(n) =
m(n)
N

and p(n) =
m(n)
n

. (16)

m(n) is nondecreasing function and the graph of

P : D ⊂ [0, 1]→ [0, 1] defined by P (r(n)) = p(n) (17)

represents the effectiveness of searching methods. That sort
of graphs are drawn on Figs 2, 3, 5 and 7.

4. Experiments

We define two implementations of s- and p-GHD de-
noted by:

– (α, β, τ),p – the sorting algorithm for producing the
word sequence (15) uses primary sort key p-GHD and sec-
ondary sort key s-GHD. This approach avoids the discon-
tinuity of p-GHD (see [1], and [2]) when the words in the
sequence (15) are divided into a few classes, which corre-
spond to equal distances to the pattern.

– (α, β, τ),s – the sorting algorithm uses primary sort
key s-GHD and secondary sort key p-GHD.

In all experiments n ∈ [1, 500].

4.1. Typewritten text

Bulgarian typewritten text of 333 bad quality pages
(Fig. 1) is the data used in our experiments (see also [1] and
[2]). A word is a pattern word W0. It occurs 231

Figure 1. Typewritten text

times in the text but the number of correct segmented words
is 200, so we set N = 200. Figs 2 and 3 present

graphs of the function (17) for this word. On Fig. 2 we can
see that almost 80% of words are placed at the
beginning of the sequence (15) in (0.03, 0.005),s-case. The
best precision 0.77 with maximum recall 0.95 is reached for
(0.03, 0.005),p. The remaining parameters for all cases are
ρ = ρ

(τ)
2 and τ = 15.

The best results for the word , obtained in our
experiments for s-case and ρ = ρ

(τ)
∞ , are given in Fig. 3. We

see that there is no best set of parameters – the maximum
r(n) = 0.825 for p(n) = 1 is reached for (0.01, 0.001) and
τ = 15 while for r(n) ∈ [0.9, 0.975] the best parameters
are (0.03, 0.005) and τ = 19.
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Figure 2.

Figure 3.

4.2. Printed text

The carried out experiments are based on an old book
(1884) – Bulgarian Chrestomathy, created by famous
Bulgarian writers Ivan Vasov and Konstantin Velichkov
(Fig. 4). Theoretically we can find all words in the printed
text which coincide with a given pattern word under the as-
sumption that scanned images are perfect. In this instance
the quality of scanned images are quite bad. Many pages
have slopes in the rows, there are significant variations in
gray levels, etc. There is no text version till now of this
book, which might be produced using appropriate OCR
software. The reasons are the quality of images and the
absence of OCR software because the text contains old and
obsolete Bulgarian letters. Also spelling and grammar are
quite different in modern Bulgarian language. For our ex-
periments 200 images from about 1000 scanned pages are
used. We choose a pattern word . It is tedious to count
all words in all 200 pages, but we can estimate quite
precisely their number. The best searching result give us
114 correct words in the first 500 of the sequence (15). The

Figure 4. Printed text

total number of checked words with approximately same
length is 7505 and the distribution of correct words is the
reason for setting N = 120 and using this number in for-
mulas (16).

Figure 5.

Fig. 5 presents the results of applying GHD for α =
0.01, β = 0.001, ρ = ρ

(τ)
2 and τ = 15. The graphics

A,s and A,p are produced with the pattern word . – s-
and p-case respectively.

In the text there are two cognate words and .
When we count as correct all three of them, setting N =
230 the obtained results are better as it can be seen in Fig. 5,
graphics B,p and B,s.

4.3. Handwritten text

The text under investigation is Slavonic manuscript col-
lection (Fig. 6), “Zlatoust” (1574), 747 pages, but we con-
sider 200 pages for the experiments. The segmentation is
quite good due to the clerkly hand of the writer, and a rela-
tively simple algorithm could separate rows and words. The
pattern word is . Occasionally the same word is writ-
ten as . We count both words as correct retrievals.
There are two more words and which are very
similar as images but have different meanings and we do
not count them. When calculating r(n), we suppose that
N = 160 because there are maximum 159 correct words
in the first 500 of the sequence (15), which consist of 4982

399



Figure 6. Handwritten text

words with approximately same length. The results pre-

Figure 7.

sented on Fig. 7 show that the search process is the most
successful for α = β = 0 in p-case. The point distance is
ρ2, the parameter τ = 15 for α = β = 0 and τ = 19 for
α = 0.1 and β = 0.01.

5. Conclusions

The experiments show that the direct approach for
searching words in binary text images could be applied suc-
cessfully in practice. HD and its modifications are a good
choice for measuring word image similarities. GHD unifies
the HD approach – GHD comprises of many existing word
matching methods and offers new methods by choosing var-
ious values for the parameters α, β, τ and point distance,
and processing s- or p-cases. The recommended values for
α are in the interval [0, 0.1] and for β in [0, 0.01]. All three
distances ρ2, ρ1 and ρ∞ can be used. The value of τ de-
pends on image sizes but it must be greater than 5. There
is no universal optimal parameter values for any scanned
document and any searched word. The choice of good pa-
rameter values is made easier by using oriented software
tool (see [7]). Quite acceptable results can be achieved for
α = β = 0 when the image quality is relatively good.

Obtaining a word sequence for a given pattern word or-
dered by p- and s-GHD, using primary and secondary sort
keys, gives an additional advantage in practical aspects. The
experiments with Bulgarian typewritten text, printed text
and manuscript confirm the possibility of wide application
of our approach.
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