Andrey Andreev,
Nikolay Kirov
(Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences)

SOME VARIANTS OF HAUSDORFF DISTANCE
FOR WORD MATCHING 1

Abstract: Several recently proposed modifications of Hausdorff distance (HD) are examined with respect to word image matching for bad quality typewritten Bulgarian text. The main idea of these approaches presumes that omission of the extreme distances between the points of the compared images eliminates the noise (to some extent) and the algorithms become more robust. A few robust HD measures, namely, censored HD, LTS-HD, and a new binary image comparison method that uses a windowed Hausdorff distance, lie in the base of the computer experiments carried out using 54 pages of typewritten text.

Key words: text image, word matching, Hausdorff distance, letter searching

1. Introduction

The reasons to study the problem of word matching lie in:
- there exist a lot of binary images of scanned pages of low quality historical documents;
- it is difficult to OCR them because of low quality, old grammar and spelling, and old letters (not used nowadays);
- it is difficult even for a man to understand the letters and words in the text like these:

Один два три

The application of the Hausdorff distance (HD) to the comparison of binary images presented in 1993 by Huttenlocher et al.[7] is used widely in different modified forms. In 2005 at Ohrid conference in article [1] some of the most popular varieties of HD were examined for their effectiveness in word matching. Typewritten text of 49 pages of bad quality historical Bulgarian records was the material from which specific words of different length were located and extracted.

The proposals for solving the problem are:
- to write a software tool which implements an efficient method for searching a word (a pattern word) in a set of pages (Gatos, Pratikakis, Perantonis, [6], 2004);
- the base of such a tool is a method for word comparison, and after that ordering words with respect to their distances according to a chosen pattern word;
- the pattern word can be a synthetic keyword (Konidaris, Gatos and al. [9], 2007) or can be a real word chosen from a text (feedback approach).

1 This research has been partially supported by a Marie Curie Fellowship of the European Community program “Knowledge Transfer for Digitalization of Cultural and Scientific Heritage in Bulgaria” under contract number MTKD-CT-2004-509754.
This paper can be considered as a continuation of [1] in the field of application of HD to word matching. It follows the ideas of many authors to find out robust modification of HD.

Particularly for bad quality text the robustness of HD allows decreasing the influence of the noise and leads to better results. It can be summarized that all methods considered further exploit the idea of ignoring some amount of the extreme distances between the points of the images supposing that such points are noise.

Let A and B denote bounded sets on the Euclidean plane R^2 and let a and b be points on R^2 with coordinates $a = (a_1, a_2), b = (b_1, b_2)$. Then HD between A and B is

$$HD(A, B) = \max \{ h(A, B), h(B, A) \},$$

where

$$h(A, B) = \max_{a \in A} \min_{b \in B} \rho(a, b), \quad \rho(a, b) = \max \{ |a_1 - b_1|, |a_2 - b_2| \}.$$

Instead of the above definition of $\rho(a, b)$ an arbitrary point distance in the plane R^2 can be used.

Five different distances were examined numerically in [1] for the purpose of word matching. Among them is so called “Modified Hausdorff Distance” (MHD). Dubuisson and Jain [5] proved numerically that the “distance” MHD produces the best results among the 24 distances of Hausdorff type. In [1] MHD was slightly simplified and SHD distance

$$SHD(A, B) = \max \{ h(A, B), h(B, A) \}, \quad h(A, B) = \sum_{a \in A} \min_{b \in B} \{\rho(a, b) : b \in B\}$$

was proposed. Computer experiments show that for our goals MHD and SHD behave equivalently (with tiny advantage for SHD) and that they surpass the other methods.

2. Robust Hausdorff distances used in word matching

2.1. Censored Hausdorff distance $CHD_{\alpha,\beta}(A, B)$

The idea of Azencott et al. [2] and Paumard [10] is: for a point a from A the p closest neighbors of a in B must not be considered, where $p = \alpha N_B$, where N_B denotes the number of points of the set B and $0 \leq \alpha \leq 1$. Namely, let the set $X = \{x_i\}$ consist of real numbers x_i for which

$$x_1 \leq x_2 \leq \ldots \leq x_{N_X}$$

and let

$$X_\alpha = \alpha \, N_X, \quad Q_\alpha \{X\} = x_{X_\alpha}.$$

For $0 \leq \alpha, \beta \leq 1$,

$$CHD_{\alpha,\beta}(A, B) = \max \{ h_{\alpha,\beta}(A, B), h_{\alpha,\beta}(B, A) \},$$

where

$$h_{\alpha,\beta}(A, B) = Q_{1-\beta} \{D_\alpha(a, B), \, a \in A\}, \quad D_\alpha(a, B) = Q_\alpha \{\rho(a, b) : b \in B\}.$$

The proposed values for α and β that prevents irrelevant points from A and B to alter the measure are $\alpha = 0.01, \beta = 0.1$.
2.2. Least Trimmed Square distance $LTS-HD(A,B)$. In 1999 new robust variation of HD was proposed in [4] for the purposes of image matching

$$LTS-HD_\alpha(A,B) = \max \{ h_\alpha(A,B), h_\alpha(B,A) \},$$

where

$$h_\alpha(A,B) = \frac{1}{\alpha N_A} \sum_{i=1}^{\alpha N_A} \min \{ \rho(a_i,b) : b \in B \}$$

and

$$D(a_1,B) \leq D(a_2,B) \leq \ldots \leq D(a_{\alpha N_A},B), \quad D(a,B) = \min \{ \rho(a,b) : b \in B \}.$$

The suggested value for the parameter α is 0.8.

2.3. Windowed Hausdorff distance $WHD_w(A,B)$. In January 2007 in a preprint (later published in [3]) new approach was given for avoiding the noise in the images. The window W is a set in R^2 and $Fr(W)$ is the boundary of W then

$$WHD_w(A,B) = \max \{ h_w(A,B), h_w(B,A) \},$$

where:

- if $A \cap W \neq \emptyset$ and $B \cap W \neq \emptyset$ then

$$h_w(A,B) = \max_{a \in A \cap W} \min_{b \in B \cap W} (\min_{b \in Fr(W)} \rho(a,b), \min_{b \in Fr(W)} \rho(a,b));$$

$$h_w(A,B) = \max_{a \in A \cap W} \min_{b \in Fr(W)} \rho(a,b);$$

- if $A \cap W = \emptyset$ and $B \cap W = \emptyset$ then

$$h_w(A,B) = 0.$$

The problem in the above definition is how the window W to be chosen and the main difference with the classic definition of HD is the term

$$\min_{b \in Fr(W)} \rho(a,b).$$

The authors in [3] introduced the notion of local dissimilarity claiming that a ball $B(x,r)$ gives a local HD between the sets A and B in the window $B(x,r)$ when

$$WHD_{B(x,r)}(A,B) = r.$$

They also defined a Local Dissimilarity Map ($LDMap$)

$$LDMap(x) = \begin{cases}
\min \{ \rho(x,b), b \in B \} & \text{if } x \in A, x \notin B, \\
\min \{ \rho(x,a), a \in A \} & \text{if } x \in B, x \notin A, \\
0 & \text{otherwise}.
\end{cases}$$

For comparing word images we need to convert a given $LDMap$ into a number using an appropriate norm. With the discrete L_1 norm of the function $LDMap(x)$ we obtain SHD.

3. Experimental results

3.1. Measuring the effectiveness of the methods. The effectiveness of the distances is given usually by the standard estimations Recall and Precision – Junker, Hoch and Dengel [8]. Let us look for a word W in a collection of binary text images in which W occurs N times. According to a specific criteria let a given method produce a sequence of words $\{W_i\}_{i=1,2,...}$. Such criteria can be some of the distances mentioned above. For a fixed $n = 1, 2, ..., \leq n$ be the number of words among the first n words in the sequence $\{W_i\}_{i=1,2,...}$, that coincide with W. Then we define

$$\text{Recall}(n) = \frac{m(n)}{N} \quad \text{and} \quad \text{Precision}(n) = \frac{m(n)}{n}.$$

3.2. Numerical results. We have tested numerically the effectiveness of the distances defined above in comparison with the distances MHD and SHD, which are considered nowadays among the best. Bulgarian documents of typewritten text of 54 pages of bad quality are the material from which three words of different length are located and extracted.

The results for relatively long word Пазарджик which occurs 58 times in the text are shown on Figure 1. Figures 2 and 3 represent the results for the words песни and така. They occur respectively 22 and 15 times in the text. In these figures the distances HD and $LTS-HD$ are denoted by OHD and LTS respectively.

![Graph showing results for Пазарджик](image)

Fig. 1. Results for Пазарджик

4. Conclusions

- The distances $LTS-HD$, MHD and SHD produce almost the same results. The reason is that these distances accumulate the distances of all points (in $LTS-HD$ almost all points) avoiding in this way the discrete narrow scale of measuring of HD and CHD.\)
HD and CHD could be considered as a “discontinuity”. They operate relatively small amount of integer numbers for representation of the distances between the sets. In the case of word matching these integers are equal to 3, 4 or 5. This explains the deterioration of the results produced by these methods for values of Recall(n) closed to 1. For example, for the word песни with occurrence 22 times HD and CHD provide the following results:
In this sense the methods MHD, SHD and LTS-HD practically use continuous scale for ordering the spotted words ensuring much better results.

References

aandreev@math.bas.bg
nkirov@math.bas.bg