
CSECS 2014, pp. 000 - 000 The 10 Annual International Conference on
Computer Science and Education in Computer Science,

July 03-07 2014, Albena, Bulgaria

A TEST SYSTEM FOR CHECKING AND
EVALUATION THE STUDENTS’ PROGRAMMING

KNOWLEDGE

Nikolay KIROV

Abstract: The article describes the preparation and implementation of multiple-
choice type tests for checking the students’ knowledge of programming. Justifi-
cation of the chosen approach, methodology and technical details are discussed.
Software for generating tests and analysing of results is proposed.
Keywords: Multiple choice tests, assessment of programming, software.
ACM Classification Keywords: K.3.2 [Computers and Education]: Computer
and Information Science Education Computer science education
J.1 [Computer Applications]: Administrative Data Processing Education

Introduction

Different types of tests are used to assess the knowledge and skills of students
at all levels of education. The most common are multiple-choice and constructed-
response tests (see [2]). Our choice is for multiple-choice questions implemented
as paper-and-pencil test. We use the following terminology: The test consists of
items. The stem is the introductory question or statement at the beginning of each
item. It is followed by options. An option may be an answer – the correct option
or a distractos – the incorrect option. The items are stored in an item bank. Items
are pulled from the bank and assigned to test forms for publication either as a
paper-and-pencil test or some form of e-assessment.
Our system uses all the items from the item bank to produce files for paper-and-
pencil test. An individual test (test form) consists of fixed number of items with
four options for any item (Figure 1). All individual tests are different because they

2 Nikolay Kirov

are produced from the item bank using random number generator. Randomized
paper-and-pencil test forms are used to minimize copying among examinees in
adjacent seats.

Figure 1: The upper part of a real individual test

The presented here system produces individual tests of multiple-choice type. The
number of correct options (answers) of an item may be 0, 1, 2, 3 or 4, i.e. we have
multiple response items. Also a specific requirement is that the student have to
identify each option or as answer (using “true” or “yes”) either as distractor (using
“no” or “false”), i.e. he or she has 3 choices of response:

• “yes”, i.e. I know the option is an answer;

• “no”, i.e. I know the option is a distractor;

• nothing, i.e. I do not know whether the option is an answer or a distractor.

A correct response (“yes” or “no”) wins a point but an incorrect response loses one
point (penalty point) in the total score. Some arguments for these non standard

CSECS 2014, July 03-07 2014, Albena, Bulgaria 3

characteristics (0, 1 or many answers per item, 3-valued logic and penalties) of
our multiple-choice test for students in programming can be found in [1]. About
penalties, for example, the SAT test system removes a quarter point from the test
taker’s score for an incorrect answer.

Advantages and Disadvantages

The advantages of multiple-choice tests are well known (see for example [2]) and
will not be discussed here. More important is how to avoid the disadvantages of
this type of testing. Our modifications of the standard multiple-choice test and
the use in a particular area of knowledge gives us a chance to substantiate our
approach. We will discuss three of the most widespread arguments.
1. The most serious disadvantage is the limited types of knowledge that can
be assessed by multiple-choice tests. Multiple choice tests are best adapted for
testing well-defined or lower-order skills.
Introductory courses on programming possess the characteristics: the ideas,
methods and rules in programming are well-defined, and an essential part of pro-
gramming skills is the low-order knowledge: syntax, simple constructions, etc.
Our modifications to the standard multiple-choice test contribute to setting more
sophisticated and complex questions that check students’ knowledge at a higher
level. The test is not alone and is not sufficient for a complete assessment of
student programming skills.
2. Another disadvantage of multiple-choice tests is possible ambiguity in the stu-
dent’s interpretation of the item.
We apply several methods in avoiding this disadvantage. At least one week before
the date of the test all original stems and two example options per item (an answer
and a distractor) are published online on the course website. Thus, the students
have the opportunity to learn about the test in advance. In addition a few days
before the test, a general advice is organized on which the issues of the test
are discussed. During the test time students can use lectures, textbooks and
any other printed materials. Sometimes students are allowed to use a computer,
compiler, and even the Internet (arguments for this can be found in [1]). If a
student has questions about ambiguities in the test stems or options, the instructor
answers the questions personally.

4 Nikolay Kirov

After checking the test by the instructor, the test forms are returned to the students
at the next class. Each student should carefully check his or her individual test in
order to determine whether he or she agrees with the errors noted. If something
is not clear she or he discuss the case with the instructor. The goal is the students
to realize their mistakes, which obviously contributes to a better understanding of
the teaching material. Our practice is to accept the students’ opinions when the
student has different interpretations and possibly to increase his or her test points.
3. Another disadvantage of multiple-choice examinations is that a student who is
incapable of answering a particular question can simply select a random answer
and still have a chance of receiving a mark for it.
We assess a test which consists of M items and is obtained x points as follows:

if (x/M/4*100 >= 90) e = 6;

if (x/M/4*100 >= 76) e = 5;

if (x/M/4*100 >= 60) e = 4;

if (x/M/4*100 >= 50) e = 3;

else e = 2;

where e is the mark in a six point system of marks. To calculate the probability
of passing the test using random method, we choose a test with 10 items and
maximum 40 points. Probability is 0.11% in the case that the student has marked
all options with “yes” or “no” (given the answer to all the questions), and the prob-
ability is 0.0034% if the student is checked randomly with “yes”, “no” or nothing.

The Software

Preparation of the test begins with selecting items – stems and options and put
them into an item bank. At least 10 items, each having at least 5-6 possible an-
swers, should be completed and stored as a plain text file in the following format:
The stem text, list of options each on a new line with prefix “+” for answers or “−”
for distractors. The example bellow shows a part of an item – the stem following
with two answers and one distractor.

Mark the correct/incorrect assertions about pointers.

+ A pointer denotes the location of a value in the memory.

+ Finding the value to which a pointer points is called

CSECS 2014, July 03-07 2014, Albena, Bulgaria 5

dereferencing.

- The value of a pointer must be an address in the heap

memory.

This plain text file is in LATEX format and represents our item bank. It contains input
data for the software tool test_generator (Figure 2).

Figure 2: Test generator – user interface

test_generator produces individual tests using random distribution of both
items and their options. Each individual test consists of 10-20 items with four
options, marked as a), b), c), d). The output plain text file (out.tex) is in
LATEX format and contains all individual tests (see Figure 1). The second output
file (tab.tex) is a table for checking the tests (Figure 3). The third output file
(data.txt) is a copy of the input file with additional data for the generated indi-
vidual tests.
Checking tests can be carried out manually – using the table (Figure 3) gen-
erated by test_generator or automatically by the second software tool –
test_checker.
The input of student responses (completed individual tests) can also be done
manually – using the user interface of test_checker (Figure 4) or automat-
ically – using a special template for students’ answers and scanning the pa-

6 Nikolay Kirov

Figure 3: Table for checking the tests manually

Figure 4: Test checker – user interface

pers. An input for test_checker is also the file data.txt, which is pro-
duced by test_generator. The program test_checker creates a text file
(save.txt), containing audited tests.
Here is a part of the file save.txt. The last item (q11) of an individual test has
4 correct answers (no, no, yes, no) and total 32 points. The next individual test

CSECS 2014, July 03-07 2014, Albena, Bulgaria 7

is number 2347 and the first item (q1) gives away −1 points as the student has
marked a) and b) as yes – incorrect, c) as nothing and d) as no – correct.

q11

a no +

b no +

C yes +

d no +

4

Total 32 (8 pt)

Test No. 2347

q1

a yes -

b yes -

c

d no +

-1

After entering all the completed individual tests, test_checker gives the re-
sults – for each option of each item of the item bank it calculates two sets of
numbers. The set A = {a, a1, a2, a3} represents all the tests and the set
B = {b, b1, b2, b3} represents the tests which collect at least a half of maximum
points. Here a, b are the number of individual tests which contain the correspond-
ing item and four of its options, a1, b1 – the numbers of tests without response
(for 0 point), a2, b2 – the numbers of tests with the correct response (for 1 point)
and a3, b3 – the numbers of tests with the incorrect (opposite) response (for −1
points). We have a1 + a2 + a3 = a, b1 + b2 + b3 = b, b ≤ a and bi ≤ ai
for i = 1, 2, 3. The file data_result.txt contains these numbers as an
extension to the any option of the items in the item bank.

Mark the correct/incorrect assertions about pointers.

+ A pointer denotes the location of a value in the memory.

% 6:2:3:1 3:0:3:0

+ Finding the value to which a pointer points is called

dereferencing. % 7:2:3:2 3:1:1:1

- The value of a pointer must be an address in the heap

memory. % 6:1:4:1 2:0:1:1

8 Nikolay Kirov

The second output file (data_result1.txt) is a plain text file containing only
the numbers and is suitable for further processing of the results.

Example

The example is the first test of Object-oriented programming (for undergraduate
students, second semester) with the following parameters: The item bank consists
of 12 item and the number of options for these items are: (14,16,19,16,12,7,12,16,
10,9,16,22). Any individual test consists of 11 items, which means maximum 44
points. test_checker generates 30 individual tests but only 19 of them were
completed by the students.
The test results are presented on Figure 5. The X-axes presents all items in
the item bank, Y-axes – number of tests. The left chart is for all 19 completed
individual tests. A little more information about the difficulty of the test items and
the students’ knowledge is obtained from the right chart, where the test forms of
those students who passed the test are counted. These are 11 individual tests,
which are collected at least a half (22) of the maximum points (44).

Figure 5: Items

We can analyse the students’ results of each option of any item in the item bank in
order to determine the strong and weak points in the students knowledge. Figure
6 presents results for the options (a, b, c, . . ., n) of the first item in the item bank.

CSECS 2014, July 03-07 2014, Albena, Bulgaria 9

Figure 6: Options

Conclusion

We presented software tools for generating and checking multiple-choice tests of
special type are publicly available and open source (see [3] and [4]). They are
written in C++ using Qt – cross-platform application and UI development frame-
work.
The tools are used in undergraduate programming courses for several years. They
save a lot of time and effort of the teacher for the preparation, verification and
evaluation of test results. Using the textbook and course materials during the test
and impossibility of cheating combine evaluation of knowledge with elements of
learning process.

References

[1] N. Kirov. A System for Assessing the Knowledge and Skills of Students in
Computer Programming. In: Proceedings of the 9th Annual International
Conference on Computer Science and Education in Computer Science, 29-
30 June 2013 in Fulda, and 1-2 July 2013 in Wurzburg, Germany (ISSN 1313
8624), 109-112.

[2] W. L. Kuechler, M. G. Simkin. How Well Do Multiple Choice Tests Evalu-
ate Student Understanding in Computer Programming Classes? Journal of

10 Nikolay Kirov

Information Systems Education, Vol. 14(4), (2003), 389-399.

[3] Test generator. https://github.com/nkirov/tests_generator

[4] Test checker. https://github.com/nkirov/tests_checker

Authors’ Information

• Nikolay KIROV

• PhD, Assoc. Prof.

• New Bulgarian University

• 1618 Sofia, Montevideo str. 21, nkirov@nbu.bg

• Programming, astroinformatics, digitization, im-
age processing

