PAGE
2

WORLD-WIDE DISTRIBUTED COMPUTING
V. Fournadjiev

Abstract: After a short overview of the most known ideas about the distributed computing as clustering and grids, the paper describes a new approach for it. The application programs are presented with their structure, called skeleton. The skeleton is sent throughout the network to find the “volunteers” for the execution of the different components of the program.
Key words: clusters, grids, distributed computing, skeleton presentation.
INTRODUCTION

The distributed computing usually is defined as: “a method of computer processing in which different parts of a program run simultaneously on two or more computers that are communicating with each other over a network.”

The distributed computing implements a kind of concurrency and the possibility to execute programs or parts of them in a parallel (concurrent) way. It is important to mention that usually the programs are executed in the sequential way. So, no every program can be transformed for distributed execution.

 The concurrency (parallelism) is known from 60s of the last century. Starting from IBM System 360 with the implementation of the channel architecture, going to PCs with 2 processors (classic and floating point arithmetic (co-processor)), to reach the form of clusters and grid computing.
The latest achievements in the field of networking and parallel algorithms, contributed the wide-spread of the distributed computing to become one of the most interesting and challenging scientific and application projects.
CLUSTERS
Cluster (http://www.beowulf.org/overview/index.html) is a widely-used term meaning independent computers combined into a unified system through software and networking. At the most fundamental level, when two or more computers are used together to solve a problem, it is considered a cluster. Clusters are typically used for high availability, greater reliability or for high performance computing, to provide a computational power that is greater than a single computer can provide. The computer performance is improved proportionally with added machines.
Common uses of the clusters are traditional technical applications such as simulations, biotechnology, financial market modeling, stream processing; Internet servers for real audio/video.
As it is depicted on Figure1, for the clients’ computers, the cluster is a simple server. The planning and the services’ time schedule are done by the scheduler (planner).

[image: image1.wmf]

Scheduler

Server

Server

Server

Work Station

Work Station

Work Station

Cluster

Figure 1
In the mostly known clusters projects Beowulf (www.beowulf.org/overview/index.html), the programs are usually written using languages such as C and FORTRAN. They use message passing interface (MPI) to achieve parallel computations. The MPI allows programmers to create message-passing parallel applications, using parallel input/output functions and dynamic process management (Gropp, William, Ewing Lusk, Nathan Doss, and Anthony Skjellum, 1996).

As with other networking architectures, the clusters require the use of a variety of specific software tools for program synchronization and scheduling (Sloan, Joseph D, 2004).

GRID COMPUTING
Grid computing involves connecting geographically remote computers into a single network to create a virtual supercomputer by combining the computational power of all computers on the grid.

According to Foster, Ian (2003), “The five Big Ideas”, behind the grids are:

a) Resource Sharing

 Currently, spare cycles generally go to waste while others have a need for cycles. In short, there is no market.
b) Secure Access.

 Trading resources requires security. This consists of access policies, authentication and authorization.
c) Resource Use.

Uses are found for excess resources.

d) The Death of Distance.

 High speed networks and low latency are bringing networked resources closer together.

e) Open Standards.

 If diverse resources are shared in the grid, they must, by their nature, use the same protocols; this is much easier if they are open to all.

The main idea of the grid computing can be explained very easily, taking into considerations the above figures (Figure 2 and Figure 3).

[image: image2.emf]

N

Y

i ≤ N

i = 1

Output = G (R 1 , R 2 ,…, R N)

i = i + 1

Input (D i)

R i = F (D i)

Main Computer

Figure 2
To make a parallel execution of the sequential cyclic program (Figure 2), each loop of the program is executed by different computers, working on the different set of data Di.

[image: image3.emf]

Input (D 1)

R 1 = F (D 1)

Input (D 2)

R 2 = F (D 2)

Input (D N)

R N = F (D N)

Output = G (R 1 , R 2 ,…, R N)

Comp.1 Comp.2 Comp.N

Main Computer

Main Computer

Figure 3
The results of each loop Ri are sent to the Main computer. The final result is obtained by combining the partial results by the Main computer.

The whole process can be done either on-line or off-line. The necessary software is usually sent from the Main computer to the others as well as the corresponding data.
The difference between the cluster and the grids is the lack of centralized control in the coordination of the resources. The acting computers are connected in the network (local or global) using standard, open, general-purpose protocols and interfaces.

Grid computing was impossible until high-speed internet connections enabled firms to connect remote machines economically and move enormous quantities of data. Grid computing requires software programs to control and allocate resources on the grid, such as open-source software provided by Globus Alliance (www.globus.org) or private providers. Client software communicates with a server software application. The server software breaks data and application code into chunks that are then parceled out to the grid’s machines. The client machines can perform their traditional tasks while running grid applications in the background.

On the basis of this simple transformation a lot of Grid-projects have been developed – Table 1.

The Berkeley Open Infrastructure for Network Computing (BOINC) – (Berkeley Open Infrastructure for Network Computing) platform is currently the most popular volunteer-based distributed computing platform.

 Table 1
	Project name
	Application Area

	SETI@Home
	Search for extra terrestrial intelligence

	Malaria@home
	Stochastic modeling of the clinical epidemiology and natural history of malaria

	HashClash@home
	Collision generation for hash functions

	PrimeGrid
	Search for “titanic” primes

	Hydrogen@Home
	Searches for the most efficient method of producing biohydrogen

NEW APPROACH TO WORLD-WIDE DISTRIBUTED COMPUTING
Assumptions
a) The application program, executed in a distributed environment, is presented as a sequence of program components (modules) by the computer-initiator.

b) Each component is identified by its name.

c) The component is processing some sets of Input Data and produces a set of Output Data.

d) The computer/computers which will take part in the distributed environment will be called “volunteers”.

e) The start of the component depends on the execution of the previous one/ones and according to some condition/error code.

f) The resulting output data can be sent to other computer or to be stored locally.

This information for the whole application will be called SKELETON. The format of the skeleton is given bellow – Table 2.
Table 2
	Component’s ID
	Component’s

Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result

ID
	Result Destination
	Accept
	Volunteer

ID

The whole process of interaction between the initiator and the “volunteers” is composed by 5 phases:

· Phase 1: preparing the initial skeleton by the initiator and sending it to the “volunteers”. In this Phase the location of some of the program components can be known or unknown.
· Phase 2: receiving the filled skeletons from the different “volunteers”. The important information here is to indicate where the components are or their location is still unknown.
· Phase 3: the initiator analyses the received skeletons and take the decision: which component where will be executed on the basis of its availability in the NET or the execution of the total application will be cancelled.
· Phase 4: the initiator sends to the selected “volunteer” a row of the skeleton for a given component to be executed by this “volunteer”. This Phase will be executed only in the case that all components are localized.
· Phase 5: the “volunteer” has the all necessary information to start/wait/cancel the execution of the component.

The whole process will be illustrated with the following example. Suppose that the application program can be presented by the general flowchart, given bellow (Figure 4).

[image: image4.emf]

Processing: R 1 =F 1 (D 3 , D 4)

Processing: R 5 =F 5 (R 1 , R 2 , R 3 ,R 4)

Processing: R 4 =F 4 (D 1 , D 4)

Processing: R 3 =F 3 (D 2 , D 4)

Processing: R 2 =F 2 (D 1 , D 3)

Figure 4
As there are 5 different processes: F1, F2, F3, F4 and F5 and because they are informatively independent, such program can be transformed for parallel execution- Figure 5.

[image: image5.emf]

Sending: R 2 →Computer5

Processing: R 2 =F 2 (D 1 , D 3)

Sending: R 1 →Computer5

Processing: R 1 =F 1 (D 3 , D 4)

Sending: R 3 →Computer5

Processing: R 3 =F 3 (D 2 , D 4)

Sending: R 4 →Computer5

Processing: R 4 =F 4 (D 1 , D 4)

N

Y

St1 =1

Y

St1 =1

N

Y

St1 =1

N

N

Y

St2 & St3 & St4=1

Sending: R 5 →Computer1

Processing: R 5 =F 5 (R 1 , R 2 , R 3 ,R 4)

Figure 5
Now, let follow the 5 phases, explained above, and assuming that the processes F1, F2, F3, F4 and F5 will be executed in 5 different computers.
Phase1: Preparing the Initial skeleton and send it to the “volunteers”

 Table 3
	Component’s

ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F1
	Unknown
	D3, D4
	Computer3
	Immediate
	Unknown
	R1
	Computer7
	?
	?

	F2
	Unknown
	D1, D3
	Computer2
	F1:Done
	Unknown
	R2
	Computer7
	?
	?

	F3
	Unknown
	D2, D4
	Computer4
	F1:Done
	Unknown
	R3
	Computer7
	?
	?

	F4
	Unknown
	D1, D4
	Computer3
	F1:Done
	Unknown
	R4
	Computer7
	?
	?

	F5
	Unknown
	R1, R2,

 R3, R4
	Computer7
	F2, F3, F4: Done
	Unknown
	R5
	Computer1
	?
	?

Phase2: Receiving the filled skeletons from the different “volunteers”.
· from “volunteer”: Computer 2;

 Table 4
	Component’s

ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F1
	Computer2
	D3, D4
	Computer3
	Immediate
	Unknown
	R1
	Computer7
	Y
	Computer2

	F2
	Unknown
	D1, D3
	Computer2
	F1:Done
	Unknown
	R2
	Computer7
	?
	?

	F3
	Unknown
	D2, D4
	Computer4
	F1:Done
	Unknown
	R3
	Computer7
	?
	?

	F4
	Unknown
	D1, D4
	Computer3
	F1:Done
	Unknown
	R4
	Computer7
	?
	?

	F5
	Unknown
	R1, R2,

R3, R4
	Computer7
	F2, F3, F4: Done
	Unknown
	R5
	Computer1
	?
	?

· from “volunteer”: Computer 3;

 Table 5
	Component’s ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F1
	Unknown
	D3, D4
	Computer3
	Immediate
	Unknown
	R1
	Computer7
	?
	?

	F2
	Computer3
	D1, D3
	Computer2
	F1:Done
	Unknown
	R2
	Computer7
	Y
	Computer3

	F3
	Unknown
	D2, D4
	Computer4
	F1:Done
	Unknown
	R3
	Computer7
	?
	?

	F4
	Unknown
	D1, D4
	Computer3
	F1:Done
	Unknown
	R4
	Computer7
	?
	?

	F5
	Unknown
	R1, R2,

R3, R4
	Computer7
	F2, F3, F4 :Done
	Unknown
	R5
	Computer1
	?
	?

· from “volunteer”: Computer 4;

 Table 6
	Component’s ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F1
	Unknown
	D3, D4
	Computer3
	Immediate
	Unknown
	R1
	Computer7
	?
	?

	F2
	Unknown
	D1, D3
	Computer2
	F1:Done
	Unknown
	R2
	Computer7
	?
	?

	F3
	Computer4
	D2, D4
	Computer4
	F1:Done
	Unknown
	R3
	Computer7
	Y
	Computer4

	F4
	Unknown
	D1, D4
	Computer3
	F1:Done
	Unknown
	R4
	Computer7
	?
	?

	F5
	Unknown
	R1, R2,

R3, R4
	Computer7
	F2, F3, F4 :Done
	Unknown
	R5
	Computer1
	?
	?

· from “volunteer”: Computer 5;
 Table 7
	Component’s

ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F1
	Unknown
	D3, D4
	Computer3
	Immediate
	Unknown
	R1
	Computer7
	?
	?

	F2
	Unknown
	D1, D3
	Computer2
	F1:Done
	Unknown
	R2
	Computer7
	?
	?

	F3
	Unknown
	D2, D4
	Computer4
	F1:Done
	Unknown
	R3
	Computer7
	?
	?

	F4
	Computer5
	D1, D4
	Computer3
	F1:Done
	Unknown
	R4
	Computer7
	Y
	Computer5

	F5
	Unknown
	R1, R2,

R3, R4
	Computer7
	F2, F3, F4: Done
	Unknown
	R5
	Computer1
	?
	?

· from “volunteer”: Computer 6;
 Table 8
	Component’s

ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F1
	Unknown
	D3, D4
	Computer3
	Immediate
	Unknown
	R1
	Computer7
	?
	?

	F2
	Unknown
	D1, D3
	Computer2
	F1:Done
	Unknown
	R2
	Computer7
	?
	?

	F3
	Unknown
	D2, D4
	Computer4
	F1:Done
	Unknown
	R3
	Computer7
	?
	?

	F4
	Unknown
	D1, D4
	Computer3
	F1:Done
	Unknown
	R4
	Computer7
	?
	?

	F5
	Computer6
	R1, R2,

R3, R4
	Computer7
	F2, F3, F4: Done
	Unknown
	R5
	Computer1
	Y
	Computer6

Phase3: Analysis of the received status and taking the decision and preparing the final skeleton: all program components locations are found
 Table 9
	Component’s ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F1
	Computer2
	D3, D4
	Computer3
	Immediate
	Start
	R1
	Computer7
	Y
	Computer2

	F2
	Computer3
	D1, D3
	Computer2
	F1:Done
	Wait for F1
	R2
	Computer7
	Y
	Computer3

	F3
	Computer4
	D2, D4
	Computer4
	F1:Done
	Wait for F1
	R3
	Computer7
	Y
	Computer4

	F4
	Computer5
	D1, D4
	Computer3
	F1:Done
	Wait for F1
	R4
	Computer7
	Y
	Computer5

	F5
	Computer6
	R1, R2, R3, R4
	Computer7
	F2, F3, F4: Done
	Wait for F2, F3, F4
	R5
	Computer1
	Y
	Computer6

Phase4: Sending the row of the skeleton to the selected “volunteer”
· to Computer2
 Table 10
	Component’s ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F1
	Computer2
	D3, D4
	Computer3
	Immediate
	Start
	R1
	Computer7
	Y
	Computer2

· to Computer3
 Table 11
	Component’s ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F2
	Computer3
	D1, D3
	Computer2
	F1:Done
	Wait for F1
	R2
	Computer7
	Y
	Computer3

· to Computer4

 Table 12
	Component’s ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F3
	Computer4
	D2, D4
	Computer4
	F1:Done
	Wait for F1
	R3
	Computer7
	Y
	Computer4

· to Computer5
 Table 13
	Component’s ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F4
	Computer5
	D1, D4
	Computer3
	F1:Done
	Wait for F1
	R4
	Computer7
	Y
	Computer5

· to Computer6

 Table 14
	Component’s ID
	Component’s Location
	Data ID
	Data Source
	Start Condition
	Execution Status
	Result ID
	Result Destination
	Accept
	Volunteer ID

	F5
	Computer6
	R1, R2, R3, R4
	Computer7
	F2, F3, F4: Done
	Wait for,F2, F3, F4
	R5
	Computer1
	Y
	Computer6

Phase5: The “volunteers” have the all necessary information to start/wait/ the execution of the component:

· Computer2: starts the execution of F1 as the component1 is there and there is no condition for its execution. The Input Data is downloaded from Computer3 and the Output Data is sent to Computer7;

· Computer3 Computer4, Computer5: are waiting for the execution of Component1;

· Computer6: is waiting for the execution of components F2, F3 and F4;

· After the execution of component F1, Computer3, Computer4 and Computer5 start the execution of their own components;
· After the execution of these components, Computer6 starts and completes the execution of whole application and sends the final results to Computer1.
CONCLUSION
Differences with the others….

· Unlike the classic grids in which the different computers execute the same program but with the different data, the proposed new approach can implement real parallel computing using different program components, processing different data.

· The program components can be downloaded from the main computer (responsible for the entire application) or from others within the Net.

· The results are stored either locally or in the main computer.

· Fully decentralized system: no dedicated servers or schedulers.

· The “volunteer” computer chooses its own program component/components.
Advantages

· The presentation of the application as a skeleton is very simple.

· Using the skeleton, each participating computer can locate the necessary resources across the Network.
· No need for the initiator to download the program component from a given “volunteer”, if the “volunteer” is able to execute the component by itself.

· The program files traffic in the NET will be minimal.

· The inter-computer control traffic is limited and consists only of sending/receiving the skeletons.
· Using Components from standard Library of the modern programming Languages (C++, Java), there is no need to download the components from the Initiator.

· The decomposition of the application in components corresponds to the modern trends in the SW architecture and engineering for re-usability of the components.

· No need of specialized new programming languages.

· Each component can have more characteristics, included in the skeleton, as possible “dangerous operations”, security certificate, etc.

Disadvantages

· The initial search for available computers can take long time, if there is no Broadcast transmission through the NET.

· The different computer platforms might require some standardization of the Operating System functions for controlling the state of the computers and the available resources as available RAM memory and disk space.

Problems within INTERNET

As it is clear from the example, the effectiveness of the proposed approach depends on the sending mechanism of the initial skeleton. In LAN environment, this is done using broadcast transmission. Because there is no broadcast transmission in the INTERNET, the question is how to create the list of available computers “volunteers”?
One possible solution is to create a “notice board” computer for local communities, Universities’ campuses, etc), in which the computers are connected in LAN. The “notice board computer” will be publicly known by the “initiators”. In such cases, the initiators will send the initial skeleton to the notice board computer. After receiving it, the skeleton will be re-transmit in a broadcast mode to the LAN connected computers. The further communications will be done by the individual computers without necessity of the notice board computer.
Not minor problems are the problems with the security. It is possible, that the described approach can be used for spreading of malicious software. The only solution here is the program components to be certified.

Finally, should some charges be introduced to use the available computers (at least for the power consumption) or this should be done on the voluntary basis? Here the experience with the Grid-projects as SETI@Home will be very useful.
References:

1. Gropp, William, Ewing Lusk, Nathan Doss, and Anthony Skjellum, “A High- Performance, Portable Implementation of the MPI Message Passing Interface Standard,” Parallel Computing, 1996, 22, 789–828. <http://www-unix.mcs.anl.gov/mpi/ mpich/>.

2. http://www.beowulf.org/overview/index.html
3. Sloan, Joseph D., High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and MPI, first ed., O’Reilly Media, 2004.

4. Foster, Ian, “What is the Grid,” <http://www-fp.mcs.anl.gov/~foster/Articles/ WhatIsTheGrid.pdf> July 20 2002. , “The Grid: Computing without Bounds,” Scientific American, April 2003. <http: //www.eweek.com/article2/0,1759,1737050,00.asp>. 31

5. Condor Team, “Condor Version 6.6.9 Manual,” <http://www.cs.wisc.edu/condor/ manual/v6.6.9/condor-V6_6_9-Manual.pdf> May 25 2005.

6. Berkeley Open Infrastructure for Network Computing .

_1274188576.doc

Scheduler

Server

Server

Server

Work Station

Work Station

Work Station

Cluster

_1274525392.doc

St2 & St3 & St4=1

Y

N

Processing:

R4=F4(D1, D4)

Sending:

R4→Computer5

Processing:

R3=F3(D2, D4)

Sending:

R3→Computer5

Processing:

R1=F1(D3, D4)

Sending:

R1→Computer5

Processing:

R2=F2(D1, D3)

Sending:

R2→Computer5

N

St1=1

Y

N

Processing:

R5=F5(R1, R2, R3,R4)

Sending:

R5→Computer1

N

St1=1

Y

St1=1

Y

_1274526204.doc

Main Computer

Ri = F (Di)

Input (Di)

i = i + 1

Output = G (R1, R2,…, RN)

i = 1

i ≤ N

Y

N

_1274523841.doc

Processing:

R5=F5(R1, R2, R3,R4)

Processing:

R4=F4(D1, D4)

Processing:

R3=F3(D2, D4)

Processing:

R1=F1(D3, D4)

Processing:

R2=F2(D1, D3)

_1274182420.doc

Main Computer

Main Computer

Comp.N

Comp.2

Comp.1

Output = G (R1, R2,…, RN)

RN = F (DN)

Input (DN)

R2 = F (D2)

Input (D2)

R1 = F (D1)

Input (D1)

